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Abstract—In this project, we implement stereo-visual inertial
odometry that utilizes the Multi-State Constraint Kalman Filter
[1]. It is a tightly coupled sensor fusion approach for VIO. The
project involves sensor fusion from a stereo camera and an IMU
(Inertial Measurement Unit). We implement seven functions of
MSCKF.

I. DATASET

For this project, we utilized the Machine Hall 01 easy
dataset. The dataset was gathered using a Micro Aerial Vehicle
(MAV), and it includes stereo images along with synchronized
Inertial Measurement Unit (IMU) data. Additionally, precise
motion and structure ground truth information are available.
This dataset is a subset of the EuRoC dataset [2], and the
ground truth data is provided by a Vicon Motion Capture
system with sub-millimeter accuracy.

II. INITIALIZE GRAVITY AND BIAS

The robot’s gravity and gyroscope bias are set during
initialization using data from the first 200 messages received
from the IMU while the robot is stationary. The gyroscope
bias (bg) is initialized by calculating the average of these 200
gyroscope readings. The gravity vector (g) is initialized as
[0, 0,−g], where g represents the magnitude of the first 200
accelerometer readings.

III. BATCH IMU PROCESSING

Upon receiving a new feature, our procedure involves
initially processing all IMU messages received before the
timestamp of the new feature. For each IMU message stored
within the IMU message buffer prior to the feature timestamp,
we adjust our state estimation utilizing the process model.

IV. PROCESS MODEL

The continuous dynamics of the estimated IMU state is,

where ω̂ and â are are the IMU measurements for angular
velocity and acceleration respectively with biases removed,
that is, ω̂ = ωm − bg and â = m− bg .

The quarternion detivative Ω is given by

Ω(ω) =

[
−[ω×] ω
−ωT 0

]
The linearised continuous-time model for IMU error-state

is

˙̃x = FX̃ +GnI

The matrix F facilitates the derivation of the discrete-
time state transition matrix. Similarly, the matrix G serves to
ascertain the discrete-time noise covariance matrix. The term
ϕK is approximated through Taylor’s expansion up to the third
order of F , whereas QK represents the discrete-time state
covariance matrix, which is computed using continuous-time
techniques based on the state covariance Q and the G matrix.
The utilization of the state matrix involves its transformation
into a symmetric matrix.

The F matrix is given by,

and the G matrix is given by,

V. PREDICT NEW STATE

Upon receiving a new IMU measurement, the integration is
performed using a fourth-order Runge-Kutta method with an
adaptive time step. Further it calculates intermediate variables
(k1, k2, k3, k4) using the gyroscope measurements and the
current state of the IMU, and then updates the orientation,
velocity, and position of the IMU using these intermediate
variables.



Fig. 1. Trajectory Error Side view

VI. STATE AUGMENTATION

In this step, we calculate the state covariance matrix, which
will help us in disseminating the ambiguity of the given state.
Initially, we extract the IMU and camera state values that
correspond to the rotation from the IMU to the camera and the
translation vector from the camera to the IMU. Subsequently,
we incorporate a fresh camera state into the state server,
utilizing the initial IMU and camera state. The augmentation
Jacobian is calculated as follows,

J = (JI 06×6N )

where JI is given by

the full uncertainty propagation is represented as,
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]
VII. ADD FEATURE OBSERVATIONS

This function retrieves the present IMU state identifier
and the count of active features. Every feature contained in
the ’feature message’ is subsequently incorporated into the
’self.map server’. Utilizing both the previously known features
and the newly tracked ones, we compute and refresh the rate
at which tracking occurs.

VIII. MEASUREMENT UPDATE

This function performs the update based on measurements
from visual features and inertial sensors. The state vector only
contains the pose of the left camera, the pose of the right
camera can be easily obtained using the extrinsic parameters
from the calibration. Stereo measurements are given by

The positions of the features in the left and right camera
frames are given by,

We compute the residuals by stacking multiple observations
of the same feature.

rj = Hj
xx̃+HjGf p̃j + nj

The measurement update function takes measurement ma-
trix H and residual matrix r as input to compute the Kalman
gain K, and then updates the IMU state XIMU , camera state,
and state covariance matrix P.

The measurement matrix H is a matrix with block rows
H(j), j = 1 to L. L is the number of all detected features. If
the number of rows (feature) is larger than the number of state
X components, we employ QR decomposition for the matrix
H . With the reduced mode of numpy.linalg.qr function, we
can directly get Q and TH .

The matrix Q can then be used to compute residual rn as



The Kalman gain K can be computed with the following
equation

The state error (∆X) is determined by the product of the
Kalman gain K and rthin.

∆X = Krn

Finally, the state covariance matrix P is updated.

IX. PROBLEMS FACED

While initializing the gravity and biases, we weren’t aware
of the quaternions being in the JPL convention which caused
errors with the state exploding. There was an inconsistency
in the measurement update function between the CPP code
[3] and the paper. The equations are different, the covariance
equation from the CPP code works as expected, but the equa-
tion from the paper wasn’t working in our case. The simplified
update equation we used following the CPP implementation
is:

X. EVALUATION

To evaluate the performance of the multi-constraint filter,
we calculate the Absolute trajectory error(ATE) using the
rpg trajectory evaluation [4] package. We first convert the
ground truth CSV to the required format and plot both
trajectories utilizing this package. We configured the package
to use SE(3) alignment before error computation.

• RMSE ATE: 0.0860 m
• Absolute Median Translation Error: 0.0724 m
• Scale Error RMSE: 1.0833 %
• Rotation error RMSE: 154.33 degrees
Fig. 1 shows the trajectory plotted with the ground truth

and the estimated trajectory superimposed. Fig. 2 shows the
plot of the translation error in the trajectory. Fig. 3 shows a
box graph for the translation error along sub-segments of the
trajectory.

Fig. 2. Translation Error

Fig. 3. Relative Translation Error

Fig. 4. Scale Error

Fig. 5 shows the plot of the rotation error. Fig. 6 shows the
box graph for the relative error in yaw along sub-segments of
the trajectory.

Fig. 5. Rotation Error

Fig. 6. Relative Yaw Error

Fig. 4 shows the scale drift along the trajectory. As a stereo
camera is used, the scale drift is minimal as evidenced by the
graph in Fig. 4.
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Fig. 7. Trajectory Error Top view
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