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Abstract—Phase 1 is centered on establishing a stereo vision-
aided odometry system by using a Multi-state Constraint Kalman
Filter (MSCKF). The project employs a strategy that combines
data from a stereo camera and an Inertial Measurement Unit
(IMU). We have developed eight distinct functions as part of
the MSCKF framework. By harnessing the information gathered
from both sensors, our objective is to precisely ascertain the
robot’s state and pinpoint its location.

I. PHASE 1: CLASSICAL APPROACH

A. Initialize Gravity and Bias

The 6-DOF IMU sensor, which is utilized for measuring
rotation (via the gyroscope) and acceleration (via the ac-
celerometer), necessitates a calibration process to compensate
for any inherent biases. This process involves determining
the bias by averaging the sensor readings while at rest and
then adjusting future readings by subtracting this bias. Ideally,
the gyroscope should show [0, 0, 0] when stationary, but
minor variations can occur. Likewise, the accelerometer should
read [0, 0, -g] relative to the world frame, but it too can
display fluctuations owing to noise and bias. Calibration takes
place before flight initiation to neutralize any biases in the
readings from both the gyroscope and accelerometer. The
function ”initialize gravity and bias” sets up the IMU’s gravity
vector and bias as well as the robot’s initial orientation using
the initial set of IMU readings. It computes the gyro bias
and assesses the gravity vector within the IMU’s frame by
taking the mean of the angular velocity and linear acceleration
from the IMU data. The initial orientation is aligned with the
inertial frame. This critical step ensures that the Visual-Inertial
Odometry system begins operation on a sound and accurate
basis.

B. Batch IMU Processing

The function for batch processing IMU data operates by
continuously reading IMU messages until a fresh batch of
images from the stereo camera is obtained. The vector that is
utilized to estimate subsequent states comprises elements as-
sociated with both the IMU and the camera. This includes the
quaternion for orientation, bias values for both the gyroscope
and the accelerometer, as well as position and velocities.
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The ”batch imu processing” operation is an integral com-

ponent of the Visual-Inertial Odometry system. It advances

the IMU’s state by analyzing the IMU data within a set
timeframe. This function cycles through the buffer’s IMU
data, discarding messages that have already been addressed
and ceasing once it reaches the predetermined time limit. For
every IMU message that hasn’t been processed, the function
employs a process model to revise the IMU’s state, taking
into account both the angular velocity and linear acceleration
data. It updates the timestamp and ID of the IMU state and
then purges the processed messages from the buffer. This
process is essential for ensuring precise state advancement and
maintaining synchronization between the IMU and the Visual
Odometry system components, thereby playing a key role in
dependable sensor fusion and localization.

C. Process Model

The ”process model” function advances the system’s state
and uncertainty using a fourth-order Runge-Kutta integration
technique. It begins by gathering pertinent details from the
existing system state, such as the IMU state encompassing
orientation, velocity, position, and biases for the gyroscope
and accelerometer. It then determines the time interval using
the given time and the IMU state’s timestamp.
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Following that, the function calculates the discrete system
dynamics matrix (F) and the noise covariance matrix (G),
which delineate the system’s behavior and noise properties.
The system dynamics matrix is estimated by employing a
third-order matrix exponential approach, tailored for brief time
intervals (dt). To achieve this, intermediary matrices Fdt, the
square of Fdt, and the cube of Fdt are computed.

Subsequently, the function employs the fourth-order Runge-
Kutta method to project the new system state by invoking
the function for state prediction. This typically revises the
system state based on the gyroscopic and accelerometric data,
alongside the extant state conjectures. The transition matrix
Phi is also adjusted to incorporate the null space, representing
the set of states that remain unobservable through the sensor
data.
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The state covariance matrix (Q) is refreshed using Phi, G,

and the continuous noise covariance matrix, illustrating the
system model’s uncertainties or inaccuracies. The covariance
linking the IMU and camera states (if existing) is corre-
spondingly revised. To ensure the state covariance matrix is
symmetric, it is averaged with its transpose.

The IMU state is updated with the latest orientation, posi-
tion, and velocity values, which constitute the null space for
the upcoming cycle of the state estimation procedure.

D. Predict New State

The ”predict new state” function carries out a forecasting
phase within an Extended Kalman Filter framework. This
phase is centered on integrating the data from the IMU sensors,
specifically the gyroscopes and accelerometers, through a
specific time increment to project the system’s forthcoming
state. This future state encompasses the IMU’s orientation,
speed, and location. The integration employs a quartic Runge-
Kutta methodology, which is adaptable in terms of time steps.
It also involves computing intermediary factors (k1, k2, k3,
k4) grounded on the gyroscope data and the IMU’s present
state, and then it utilizes these factors to refresh the IMU’s
orientation, velocity, and position.

E. State Augmentation

The ”state augmentation” function carries out the augmenta-
tion of the state by incorporating a fresh camera state into the
state server. It also refines the covariance matrix and verifies
its symmetry when new images are introduced. This involves
computing the rotational and translational relationship between
the IMU and the camera, updating the state of the camera
accordingly, and adjusting the covariance matrix to reflect this
additional state. This process is essential to ensure coherent
alignment of the IMU and camera states within the Inertial
Navigation System framework.
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Fig. 1: Measurements of stereo

Fig. 2: Position of the features in left and right Camera Frame

F. Adding Feature Observation

The function ”add feature observations” adds feature ob-
servations from a new image frame to the map server in a
visual-inertial odometry system. It creates new map features
for unseen features, updates observations for existing features,
and calculates the tracking rate.

G. Measurement Update

The ”measurement update” function performs the update
based on measurements from visual features and inertial
sensors.

To simplify the computational demands, the system initially
applies QR decomposition to the Jacobian matrix H, provided
there are more rows than columns in H. This action produces
a condensed H matrix, referred to as H thin, and modifies the
measurement vector to r thin accordingly.

The Kalman gain is calculated utilizing the compact H thin
matrix, the covariance of the state P, and the covariance of
the observation noise. This gain is pivotal in determining the
extent to which the measurements are factored into the update
phase.

The state’s deviation, denoted as delta x, is determined by
the product of the Kalman gain and the adapted measurement
vector r thin. Delta x is then segmented into smaller vectors
to update the states of the IMU and the camera independently.

The IMU’s state receives an update through the execution
of small-angle quaternion adjustments that refine the IMU
state’s orientation, gyro bias, velocity, accelerometer bias, and
position. Moreover, adjustments are made to the extrinsic
rotation and translation that link the IMU and camera. The
camera states, which include orientation and position, are



Fig. 3: Visualization

refined using small-angle quaternion maneuvers based on the
delta x cam sub-vector.

The state covariance is updated with the help of the Kalman
gain and the slimmed-down H thin matrix, resulting in the IKH
matrix, which in turn is employed to bring the state covariance
up to date. To maintain its symmetry, the newly updated state
covariance is then rectified.

H. Results

The outcomes of our implementation are depicted in the
following results. Additionally, we have visualized the errors
relative to the ground truth using the MH 01 easy EuROC
dataset.

Fig. 4: Ground Truth vs Estimated Trajectory (Top View)

Fig. 5: Ground Truth vs Estimated Trajectory (Side View)

Fig. 6: Translational error

Fig. 7: Translational error percentage



Fig. 8: Orientation error

Fig. 9: Position drift
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