
RBE 549 Project 4: Deep and Un-Deep VIO
(Traditional Visual Odometry Pipeline)

UdayGirish Maradana
Robotics Engineering (MS)

Worcester Polytechnic Institute
Worcester, MA 01609

Email: umaradana@wpi.edu

Pradnya Sushil Shinde
Robotics Engineering (MS)

Worcester Polytechnic Institute
Worcester, MA 01609

Email: pshinde1@wpi.edu

Abstract—The following report consists of a detailed analysis
of the implementation of vision-aided inertial odometry for state
estimation. We implemented a filter-based stereo visual-inertial
odometry that uses the Multi-State Constraint Kalman Filter
(MSCKF).
Keywords: Visual Inertial Odometry, Inertial measurement Unit,
Kalman Filter, State estimation

I. PHASE I: CLASSICAL APPROACH

The goal in this phase is to implement the paper attached
here [1]. We have also referred to the seminal VIO paper using
MSCKF [2] to understand the mathematical model.

Fig. 1: MSCKF Algorithm

II. METHODOLOGY

Fig. 1 gives an overview of the steps performed in the
MSCKF algorithm. We will begin by defining the IMU state
vector as:

x = (I
Gq, bg,

GvI , ba,
GpI ,

I
Gq,

IpC)

where I
Gq represents the rotation from the inertial frame

to the body frame. The body frame is set to be the IMU
frame. The vectors GvI ∈ R3 and GpI ∈ R3 represent the
velocity and position of the body frame in the inertial frame.
The vectors bgR3 and ba ∈ R3 are the biases of the measured
angular velocity and linear acceleration from the IMU. Finally,

the quaternion, IpC and GpI ∈ R3 represents the relative
transformation between the camera frame and the body frame.

For most of the code implementation, we took the concept
from paper and also followed the implementation similar to
the original C++ version given in the references.

A. Initialize Gravity and Bias

To initialize gravity and bias, we utilize the first 300
messages received from the IMU in static state of the robot.
Each message contains information about the accelerometer
and gyroscope readings which are used to calculate g as
[0, 0, gnorm] where gnorm is the norm of the accelerometer
readings and gyroscope bias bg as the average of the gyroscope
readings respectively.

B. Batch IMU Processing

The IMU message buffer contains a queue of messages. For
every message within this buffer, that’s received prior to the
feature time stamp, we process and update our state estimation
using the process model.

C. Process Model

The continuous dynamics of the estimated IMU state is:
I

G
ˆ̇q =

1

2
Ω(ω̂) I

Gq̂,
ˆ̇
bg = 03×1,

G ˆ̇v = C(I
Gq̂)â+ Gg,

ˆ̇
ba = 03×1,

G ˆ̇pI = Gv̂,

ˆ̇
ba = 03×1,

I ˆ̇pC = 03×3

(1)

Ω(ω̂ =

[
−[ω×] ω
−ωT 0

]
(2)

[ω×] =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (3)

ωm = ω + bg + ng (4)

am = I
GR(Ga− Gg + 2[ωG×]

GvI + 2[ωG×]
2 GpI) + ba + na

(5)
The linearized continuous dynamics for the error IMU state
is:

˙̃x = Fx̃I +GnI (6)

Fig. 2: Overview of Multi-State Constraint Kalman Filter

F and G in the above equation can be defined as:

F =



−[ω̂×] −I3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

−C(I
Gq̂)[â×] 03×3 03×3 −C(I

Gq̂)[â×] 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 I3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3



G =



−I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 −C(I
Gq̂) 03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 I3
03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3


D. Predict New State

For every new IMU measurement received, we use the
4th order Runge-Kutta numerical integration to propagate our
estimation for next state as mentioned in the Sample code
provided. Usually the update is:

• We get the k1,k2,k3, k4 from dq/dt and dq/dt2.
• Once we get these we predict new state (Orientation,

Velocity , Position)

E. State Augmentation

State Augmentation includes updating the Camera Pose
defined as (G

Ci
q,GpCi

) where Ci

Gq is the orientation and GpCi

is the position. This pose is calculated as:
GpC = GpI + C(Ci

Gq)
T IpC (7)

Ci

Gq = C
Gq ⊗ C

Gq (8)

J = [J1O6×6N] (9)

J =

[
C(I

Cq) 03×9 03×3 I3 03×3

[C(I
Gq)

T IpC×] 03×9 I3 03×3 I3

]
(10)

Pk|k =

[
I21+6N

J

]
PK|K

[
I21+6N

J

]T
(11)

F. Adding Feature Observation

This step/function updates the latest feature detected to the
total feature map if it does not exist. Feature map addition is
done with the help of feature ID and current state ID keys.

Zj
i = [uj

i,1v
j
i,1u

j
i,2v

j
i,2]

T (12)

G. Measurement Update

A single feature fi, as observed by the stereo cameras with
pose (Ci

Gq,
GpCi

). As stereo cameras have different poses, this
feature can be represented as (Ci,1

Gq,
GpCi,1) and (Ci,2

Gq,
GpCi,2)

for the left and right cameras respectively. The measurement
matrix, H is represented as:

H = [QQ2]

[
TH

O

]
(13)

rn = QT r = THX̃ + nn (14)

where rn is the residual.

Rn = σ2
imIq×q (15)

The Kalman gain K can be computed as:

K = PTT
H(THPTT

H +Rn)
−1 (16)

SKT = THP (17)

∆X = Krn (18)

Pk+1|k+1 = (Ik×k −KTH)Pk|k (19)

III. RESULTS

A. Final Output from the Video- VIO Implementation

1) We have added functionality to grab the frame buffer
from OpenGL and write to a video using CV2 Video
write.

2) We have also added screen recording.
3) Further we have added one function which saves the

resultant poses with timestamp to a text file. The format
is ”timestamp, tx,ty,tz, qx,qy,qz,qw”.

Fig. 3: Final Output of the Simulation - Pangolin Viewer

B. Outputs from the RPG Toolbox

1) As mentioned in the instructions, we have used RPG
toolbox for generating plots.

2) We initially converted the ASL ground truth to ”.txt”
format using the ASL Data converter in RPG Toolbox.

3) From the function we have implemented above , we
take the results.txt and calculate the Absolute Trajectory
Error (ATE) and RMSE from the RPG toolbox.

4) Absolute Median Trajectory Error (ATE): 0.06344428
5) Root Mean Square Rotation Error (RMSE): 127.42737
6) Root Mean Square Translation Error (RMSE):

0.08326015
7) Root Mean Square Scale Error (RMSE): 1.1683506

Fig. 4: Translation Error

C. Discussion

• One issue we have noticed is that there is no sync between
the image rendering and the trajectory rendering. Have to
debug this.

REFERENCES

[1] K. Sun et al., ‘Robust Stereo Visual Inertial Odometry for Fast Au-
tonomous Flight’, arXiv [cs.RO]. 2018.

Fig. 5: Relative Translation Error

Fig. 6: Rotation Error

Fig. 7: Relative Yaw Error

Fig. 8: Scale Error

Fig. 9: Trajectory Side View

Fig. 10: Trajectory Top View

[2] A. I. Mourikis and S. I. Roumeliotis, ‘A Multi-State Constraint
Kalman Filter for Vision-aided Inertial Navigation’, in Proceedings 2007
IEEE International Conference on Robotics and Automation, 2007, pp.
3565–3572.

[3] Zichao Zhang, Davide Scaramuzza: A Tutorial on Quantitative Trajectory
Evaluation for Visual(-Inertial) Odometry, IEEE/RSJ Int. Conf. Intell.
Robot. Syst. (IROS), 2018.

[4] Github Code - RPG Toolbox: https://github.com/uzh-
rpg/rpg trajectory evaluation

[5] Github Code - MSCKF Original C++ Version:
https://github.com/KumarRobotics/msckf vio/tree/master

	Phase I: Classical Approach
	Methodology
	Initialize Gravity and Bias
	Batch IMU Processing
	Process Model
	Predict New State
	State Augmentation
	Adding Feature Observation
	Measurement Update

	Results
	Final Output from the Video- VIO Implementation
	Outputs from the RPG Toolbox
	Discussion

	References

