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Abstract—Phase 1 of the project focuses on implementing a
tightly-coupled sensor fusion approach for filter-based stereo
visual inertial odometry using multi-state constraint Kalman
filter (S-MSCKF). We evaluate and report the performance of
S-MSCKF using our custom-formulated functions on the EuRoC
dataset.

I. PHASE 1

Specifically, for phase 1, we implemented seven functions
of S-MSCKF [1]. The IMU state is defined as:
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where the quaternion I

Gq represents the rotation from the
inertial frame to the body frame. GvI ∈ R3 and GpI ∈ R3

represent the velocity and position of the body frame in the
inertial frame. bg ∈ R3 and ba ∈ R3 are the biases of the
measured angular velocity and linear acceleration from the
IMU. I

Cq and IpC ∈ R3 represent the relative transformation
between the camera frame and the body frame.

A. Initialization of Gravity and Bias

The first 200 IMU messages were used to initialize the
gravity (g) and gyroscope bias (bg) (the robot is at rest). The
gyroscope bias is initialized as the average of the of first 200
gyroscope readings while gravity is initialized as the norm of
the first 200 accelerometer readings. The gravity vector is thus
defined as

[
0, 0,−gnorm

]
. The initial orientation is defined as

the quaternion from −g to −gnorm.

B. Batch IMU Processing

The batch IMU processing function processes all the IMU
messages received until a new image is received from the
camera since the operating frequency of an IMU is much
higher than that of a camera. This function propagates the
state of the IMU by processing the IMU measurements with
timestamps less than that of the current image. For each
unprocessed IMU message in the buffer, the state of the IMU
is propagated using the process model. This function ensures
time synchronization between the IMU and Camera message
updates.

C. Process Update

As per [1], the IMU state is modeled in continuous time as
per the following equations:
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where ω̂ and â are the IMU measurements for angular
velocity and acceleration respectively with biases removed.

ω̂ = ωm − b̂g (2)

â = am − b̂a (3)

Ω (ω̂) =

[
−[ω̂×] ω
−ω⊤ 0

]
(4)

The linearized dynamics of the error IMU state is formulated
as:

˙̃xI = Fx̃I +GnI (5)
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where n⊤
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. ng and na represent the

Gaussian noise of the gyroscope and accelerometer measure-
ment. nwg and nwa are the random walk rate of the gyroscope
and accelerometer measurement biases. The discrete-time state



transition matrix of Equation 5 and discrete time noise covari-
ance matrix are defined as,

Φk = Φ(tk+1, tk) = exp
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The matrix exponential for the continuous time covariance
matrix Φk is approximated up to the 3rd order as per the
power series expansion.
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The propagated covariance of the IMU state is,

PIIk+1|k = ΦkPIIk|kΦ
⊤
k +Qk

Partitioning the covariance of the whole state as,
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the full uncertainty propagation can be represented as,
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D. Predict New State

Since we are working in discrete time, the dynamics de-
fined in Equation 5 were propagated using 4th order Runge-
Kutta numerical integration which for a given ODE ẋt(t) =
f(t, xt(t), u(t)) with initial condition xt(t0) = x0 is given by,
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where u(t) are the control points at the time intervals given
by
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E. State Augmentation

Upon receiving new images, the state should be augmented
with a new camera state. The pose of the new camera state is
computed from the latest IMU state.
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The covariance matrix is also augmented.
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F. Adding New Feature Observations

This function adds feature observations from a new image
to the map server by creating new map features. Each feature
has its feature ID (i) and current state ID (j) and is represented
for the stereo set as
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G. Measurement Update

This function takes measurement matrix H and residual
matrix r (see Section III B of [1]) to calculate the Kalman
Gain K. Applying QR decomposition on H , we can obtain Q
and TH .

H =
[
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] [TH

O

]
(12)

Residual rn is computed as:

rn = QT r = THX̃ + nn (13)

The Kalman gain K is computed as:

K = PTT
H(THPTT

H +Rn)
−1 (14)

Since computing matrix inverse is unstable, K can be com-
puted by solving the following system of equations:

(THPTT
H +Rn)K

T = THP (15)

The correction in state and state covariance matrix P is updated
by:

∆X = Krn (16)
Pk+1|k+1 = (I −KTH)Pk+1|k (17)

H. Discrepancies in open-source implementation and S-
MSCKF

We found two discrepancies in the source code and [1].
• The source code follows Equation 17, however, in the

paper (it adopts the modeling from [2]), the covariance
update is given by:

Pk+1|k+1 = (I −KTH)Pk+1|k(I −KTH)T +KRnK
T

(18)
We observed that our code did not work if the above
equation was used.

• The source code implements a different equation for J
in Equation 10. However, we followed the definition in
[1] for our implementation. The difference arises due to
different conventions for representing quaternions. The
authors use the Hamilton convention to derive J but their
implementation follows the JPL convention.

https://github.com/KumarRobotics/msckf_vio


I. Results

We used an open-source repository to compute the error
metrics and the plots. The absolute median trajectory error
(ATE) is 0.1399m and the root mean square translation error
(RMSE) is 0.1543m.
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(a) Relative Translation Error Box Plot
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(b) Relative Translation Error % Box Plot
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Fig. 1: Results for our implementation of S-MSCKF
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