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Abstract—Phase 1: Using a Multi-state Constraint Kalman
Filter (MSCKF), a filter-based stereo Vision-aided Odometry is
implemented. The method used in this research combines sensor
data from an IMU and a stereo camera. The goal is to precisely
ascertain the robot’s location and state by utilizing the data
gathered from these two sensors. Additionally, we have assessed
the SMSCKF output for the EuRoC dataset to the ground truth.

I. PHASE 1

A. Introduction

In phase 1 we implement the following functions: initial-
ize gravity and bias (estimates gravity and bias using initial
few measurements of IMU), batch imu processing (Processes
the messages in the imu msg buffer, executes the process
model and updates the state), process model (Dynamics of
the IMU error state), predict new state (Handles the transition
and covariance matrices), state augmentation (Adds the new
camera to state and updates), add feature observations (Adds
the image features to the state), measurement update (Updates
the state using the measurement model) and predict new state
(Propogates the state using 4th order Runge-Kutta). These
functions are implemented based on the paper ”Robust Stereo
Visual Inertial Odometry for Fast Autonomous Flight” by Sun
Et. al. [1].

B. Initialize Gravity and Bias

When the robot is positioned statically, the first 200 mes-
sages from the IMU are used to initialize the gyroscope bias
and gravity. The average of these 200 gyroscope readings
serves as the initial value for the gyroscope bias bg. The
initial value of the gravity g is [0, 0, gnorm], where gnorm
represents the average of the first 200 accelerometer data. The
quaternion from −g to gnorm is used for the initialization of
the orientation. This is implemented in the function ”initial-
ize gravity and bias”.

C. Batch IMU Processing

This function is used to propagate the state of the IMU by
processing IMU measurements in a given time bound. This
can be done in the following steps

1) Process the imu messages in the imu msg buffer,
while discarding already processed messages.

2) Execute process model for every unprocessed message.
3) Update the state info.
4) Repeat steps 1-3 until the time bound is reached.
5) Once done processing remove all the used IMU mes-

sages from the buffer.

D. Process Model

The IMU system model is given as a continuous-time
model form equation 1. The equation is obtained from the ’A
Multi-State Constraint Kalman Filter for Vision-aided Inertial
Navigation’ paper [2].
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Here, ω(t) = [ωx, ωy, ωz]
T is the rotational velocity in the

IMU frame, and I
Gq(t) is the unit quaternion that applies

rotation from the global frame G to the local IMU frame I .
Furthermore, Ω(ω(t)) is,
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ωm and am are gyroscope and accelerometer measurements,
respectively, and can be expressed as

ωm = ω + bg + ng (4)

am = I
GR(Ga−Gg+2⌊ωG×⌋GvI +2⌊ωG×⌋2 GpI)+ ba+na

(5)
Here, the rotation matrix, I

GR, has been calculated from the
quaternion, I

Gq. The expectation operator is then applied on



equation 1 to get the equations for propagating IMU state
estimates:
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The linearized model for continuous-time IMU error-state is
presented as follows:

˙̃XIMU = FX̃ +GnIMU (7)
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E. Predict New State

A prediction step is implemented using the Extended
Kalman Filter. New states are predicted using the Runge-
Kutta 4th-order equations. During the prediction stage, the
accelerometer, gyroscope, and IMU measurements are forward
integrated over a time step (dt) to estimate the new state of
the system, which includes the IMU’s position, orientation,
and velocity. Using an adaptive time step and fourth-order
Runge-Kutta method, the integration is carried out. Using
the gyroscope measurements and the IMU’s current state, it
also computes intermediate variables (k1, k2, k3, and k4).
Using these intermediate variables, it then updates the IMU’s
orientation, velocity, and location.

F. State Augmentation

In this part, a new camera state is added to the state server,
and the state covariance matrix is augmented. The rotation
and translation from the IMU to the camera is calculated
and camera state is updated, while also computing the state
covariance matrix based on the new state. We compute the
augmented state covariance matrix using the below Equation.
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where J is given by
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G. Add feature Observations

Here we add feature observations from a new picture frame
to the map server. For features that were not seen previously, it
generates new map features, updates observations for features
that were previously visible, and determines the tracking rate.

H. Measurement Update

This function computes the Kalman gain K by taking the
measurement and residual matrices H and r, respectively, as
input. The function then proceeds to update the IMU state
XIMU , camera state, and state covariance matrix P .

When the number of rows in H is greater than the number
of columns, matrix H is decompsed using QR decomposition
to reduce computational comlpexity. This gives the followng
Q and TH .

H =
[
Q Q2

] [TH

O

]
The covariance matrix Rn of the noise vector nn is given

below.

Rn = σ2
imIq×q

Here, σ2
im is the noise in the observation, and q is the

number of rows of matrix Q.
Now, the Kalman gain K can be calculated using the

previous expressions in the following equation.

K = PTT
H(THPTT

H +Rn)
−1

After obtaining the Kalman gain, we use it to calculate the
error in the state which is represented by ∆X , as follows

∆X = Krn

Where, rn = QT r = THX̃+nn. This ∆X is then divided into
sub-vectors to update the camera and IMU states, separately.

Finally, the state covariance matrix P is updated as shown
below

Pk+1|k+1 = (Ik×k −KTH)Pk|k

I. Result

For comparison we have plotted the relative error between
Ground Truth and Estimated Trajectory using the RPG tra-
jectory evaluation toolbox [3]. Various other errors are also
depctied in this seciotn. The absolute median trajectory error
(ATE) is 0.083261 m and the root mean square translation
error (RMSE) is 0.102648 m.



Fig. 1: Relative Translation Error (percentage)

Fig. 2: Relative Translation Error (meters)

Fig. 3: Relative Yaw Error

Fig. 4: Rotational Error

Fig. 5: Scale Error

Fig. 6: Position Error

Fig. 7: Estimated vs Ground Truth Trajectory (Side view)

Fig. 8: Estimated vs Ground Truth Trajectory (Top view)

J. Classical Visual Inertial Odometry Research Areas

The following are a few examples of the areas in the
classical approach to Visual-Inertial Odometry (VIO) where
research can be done.

• Feature Management and Selection: It is imperative to
develop effective algorithms for tracking, matching, and
feature recognition across image sequences. The goal of
adaptive feature selection strategies is to preserve perfor-
mance under a variety of environmental circumstances.

• State Estimation and Filtering Techniques: It is crucial
to refine state estimate techniques like particle filters,
Unscented Kalman Filters, and Extended Kalman Filters.
Enhancing robustness against noise and outliers, decreas-
ing computational overhead, and improving convergence
qualities are the goals.

• Handling Degenerate Cases and Failure Detection: In
situations where optical or inertial information is unre-
liable, robust procedures are needed. The main goal of
research is to create algorithms that can handle degenerate
scenarios and identify and mitigate failure modes while
maintaining system state awareness.

• Scale Consistency and Drift Correction: In monocular
VIO, maintaining consistent scale and correcting drift



over long sequences are significant challenges. Research
explores methodologies for scale estimation and drift
correction, incorporating techniques such as loop closure
and SLAM.

• Multi-Sensor Fusion: Two major issues in monocular
VIO are correcting drift over lengthy sequences and
keeping consistent size. Scale estimation and drift cor-
rection approaches, including loop closure and SLAM,
are investigated in research.

• Real-Time Performance and Optimization: It is crucial
to guarantee that VIO algorithms can function in real-
time on platforms with limited resources. Algorithms
are optimized in an attempt to minimize computational
demands without compromising accuracy.

• Robust Calibration Techniques: It is essential to pre-
cisely calibrate the relative position and timing between
cameras and IMUs. The goal of research is to create field-
applicable calibration processes and adaptively adjust
calibration parameters while the system is in use.
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