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I. INTRODUCTION

The main goal of this paper is to implement and
recreate the Stereo Multi-State Contraint Kalman
Filter(MSCKF). The following functions of the
MSCKF python implementation were changed
initialize gravity and bias, batch imu processing,
process model, predict new state, state augmentation,
add feature observations, measurement update and
predict new state.

II. INITIALIZE GRAVITY AND BIAS

A. Gyroscope Initialization

The gyroscope measures the rate of rotation around the
IMU’s axes. However, even when the IMU is stationary, the
gyroscope might show some readings due to bias. We average
the angular velocity of initial 200 readings from the IMU
while it is assumed to be stationary. This average gives you
an estimate of the gyroscope bias.

B. Accelerometer Bias and Gravity Initialization

The accelerometer measures the acceleration in all three
axes of the IMU. When stationary, the only acceleration an
IMU should theoretically measure is the acceleration due to
gravity pointing downwards. By averaging the accelerometer
readings(initial 200) during a period when the IMU is static,
you can estimate the direction and magnitude of gravity.
This average should approximate the gravitational acceleration
vector, typically around 9.81 m/s² pointing toward the earth.

C. Calculating Initial Orientation

The IMU needs to know its orientation relative to the
world frame. Without this, you can’t accurately translate the
IMU’s readings into movements in your SLAM map. With
the estimated gravity vector from the accelerometer and the
known gravity vector in the world frame, you can compute
the initial orientation. This is done by finding the rotation that
aligns the +z vector (from the IMU frame) to the measured
gravity direction.

III. BATCH IMU PROCESSING

This function processes the buffered IMU data up to a
given time bound. The function is designed to propagate the
IMU’s state based on incoming IMU data up to a specified
time. It updates the system’s understanding of the IMU’s

current orientation, position, and velocity based on the angular
velocities and linear accelerations measured by the IMU.

IV. PROCESS MODEL

Method designed to update the IMU’s state based on the
current IMU readings (gyroscope and accelerometer), correct
these readings for biases, and propagate these updates through
the system using a mathematical model of IMU dynamics. The
mathematical model in continuous time is described equation
1.

I
Gq̇(t) =

1

2
Ω(ω(t))IGq(t),

ḃg(t) = nwg(t),
Gv̇I(t) =

G a(t),

ḃa(t) = nwa(t),
GṗI(t) =G vI(t)

(1)

Where I
Gq(t) is the unit quaternion for rotation from Global

frame G to IMU frame I.

Ω(ω) =

[
ω ω̂
ωT 0

]
(2)

Here ω̂ is a skew-symmetric matrix of the ω vector.
The gyroscope measurements wm are written as

ωm = ω + bg + ng (3)

The filter propagation equations are derived by discretiza-
tion of the continuous-time IMU system model. The time
evolution of IMU state dynamics is given by

I
G
˙̂q(t) =

1

2
Ω(ω̂I

G)q̂,

˙̂
bg = 03×1,

G ˙̂vI = C q̂
T â− 2⌊ωG×⌋Gv̂I + ⌊ωG×⌋2Gp̂I +G g,

˙̂
ba = 03×1,
G ˙̂pI =G v̂I

(4)

And the error dynamics of IMU error state are given by

˙̃XI = FX̃ +GnI (5)



Where F and G are

F =



⌊ω̂×⌋ −I3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

−C(IGq̂)
T ⌊â×⌋ 03×3 03×3 −C(IGq̂)

T 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 I3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3


(6)

G =


−I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 −C(IGq̂)
T 03×3

03×3 I3 03×3 I3
03×3 I3 03×3 03×3

 (7)

V. PREDICT STATE

This function manages the transition and covariance ma-
trices. It begins by calculating the norm of the gyroscope
value and retrieving the current orientation, velocity, and
position from the IMU. Next, it propagates the state using
the 4th order Runge-Kutta method. The updated values for
orientation, velocity, and position for the subsequent state are
then computed, leading to an updated state for the IMU.

VI. STATE AUGMENTATION

The state augmentation function executes the state aug-
mentation process by incorporating a new camera state into
the state server, updating the covariance matrix, and main-
taining symmetry when new images are added. It computes
the rotation and translation from the IMU to the camera,
refreshes the camera state, and adjusts the covariance matrix
according to the new state. This step is essential for preserving
alignment between the IMU and camera states in the INS
implementation. The augmented J and J1 matrix are

J =
[
J1 O6×6N

]
(8)

J1 =

[
C(ICq) 03×9 03×3 I3 03×3

⌊C(IGq)
TIpC×⌋ 03×9 I3 03×3 I3

]
(9)

Pk|k =

[
I21+6N

J

]
PK|K

[
I21+6N

J

]T
(10)

VII. FEATURE OBSERVATION

The add feature observations function incorporates feature
observations from a new image frame into the map server of a
visual-inertial odometry system. It generates new map features
for previously unobserved features, updates observations for
existing features, and determines the tracking rate.

VIII. MEASUREMENT UPDATE

The measurement update function performs the update
based on measurements from visual features and inertial
sensors. To reduce computational complexity, the Jacobian
matrix H is initially decomposed using QR decomposition
when the number of rows in H exceeds the number of
columns. This results in a reduced-size matrix, Hthin, and
a transformed measurement vector, rthin. The Kalman gain,
which is crucial for weighing measurements during the update
step, is computed using Hthin, the state covariance P , and the
observation noise covariance.

The state error, denoted as δx, is determined by multiplying
the Kalman gain with rthin. δx is then divided into subvectors
for separate updates of the IMU and camera states. For the
IMU, small-angle quaternion operations are applied to update
the orientation, gyro bias, velocity, accelerometer bias, and
position. Additionally, the extrinsic rotation and translation
between the IMU and camera are updated.

For the camera states, updates to the orientation and position
are executed using small-angle quaternion operations based on
the sub-vector δxcam.

Finally, the state covariance is updated using the Kalman
gain and Hthin to compute the I −KH matrix, which is then
used to update the state covariance. Adjustments are made to
ensure that the updated state covariance remains symmetric.

IX. RESULTS

The absolute median trajectory error (ATE) is
0.08699091908516823 m and the root mean square translation
error (RMSE) is 0.09346765838541407 m. The outcomes
of our implementation are depicted in the following results.
Additionally, we have visualized the errors relative to the
ground truth using the MH 01 easy EuROC dataset. Refer
Fig 1 to Fig 6
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Fig. 1. Relative Translation Error

0 10 20 30 40 50 60 70
Distance [m]

200
150
100

50
0

50
100
150
200

O
ri

e
n
t.

 e
rr

. 
[d

e
g
]

yaw

pitch

roll

Fig. 2. Rotation Error
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Fig. 3. Relative Yaw Error
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Fig. 4. Translation Error
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Fig. 5. Ground truth vs Estimated Trajectory (Side View)
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Fig. 6. Ground Truth vs Estimated Trajectory (Top View)
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