
Project 4: Visual Inertial Odometry
Ankit Mittal

Department of Robotics Engineering
Worcester Polytechnic Institute

Email: amittal@wpi.edu

Rutwik Kulkarni
Department of Robotics Engineering

Worcester Polytechnic Institute
Email: rkulkarni1@wpi.edu

Abstract—This project aims to showcase the integration of
camera and IMU data to accurately determine pose and ori-
entation in real-time. By harnessing the rapid and precise
measurements from the IMU, complemented by the stable yet
slower camera data, we achieve this objective. We utilize the
Stereo MSCKF algorithm to implement this fusion effectively.

I. IMPLEMENTATION OVERVIEW

The following sections give an overview about each function
that was implemented as part of this project. We have taken
reference of the follwing paper [1][2][3]

A. Initialize Gravity and Biases

This technique establishes the initial gravity and bias by
analyzing the first 200 data points from the IMU. During this
phase, the camera-IMU system remains stationary, allowing
us to calculate gravity by averaging the acceleration measure-
ments at specific timestamps. Setting the initial gravity vector
is crucial as it serves as a reference for detecting changes
in the IMU’s orientation throughout the rest of the program.
The orientation of a non-accelerating IMU is determined by
comparing the current accelerometer readings with the initial
gravity vector. Additionally, it’s essential to account for the
gyro bias, as failing to subtract this bias would result in a slight
but constant error in the gyro readings. This could mislead the
system into perceiving continuous rotation, leading to drift,
even when the robot is stationary.

B. Batch IMU processing

In this module, the IMU messages stored in the IMU
message buffer are processed sequentially. For each IMU
message, the process model is executed, and the state informa-
tion is updated accordingly. This procedure continues until a
predefined time limit is reached, which is set according to
the timestamp of the current image message. This ensures
that all IMU messages received prior to the image message
are processed. After processing, these IMU messages are then
removed from the buffer.

C. Process Model

The process model is a crucial component of the Kalman
Filter, responsible for updating the IMU error state dynamics,
state covariance matrix, and setting the null-space projections
for the IMU’s orientation, position, and velocity. This method
adheres to the equations found in section III.A of the MSCKF
paper. Initially, it involves subtracting the biases from the

raw gyro and accelerometer readings. The time difference
(dt) between the current IMU message and the last processed
timestamp for the IMU-state is calculated.

ω = ωm − b̂g

â = am − b̂a

Following this, the F and G matrices, as detailed in appendix
A of the paper, are constructed. The F matrix, a 21x21 matrix,
includes the screw matrix of the gyro omega vector, several
identity matrices, and the rotated acceleration vector.

F =



−[ω̂]× −I3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

−C(I
Gq̂) 03×3 03×3 −C(I

Gq̂) 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 I3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3


The G matrix is constructed of size (21, 12) with several

identity matricies and a rotation matrix of the orientation, as
seen in the paper.

G =



−I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 −C(I
Gq̂) 03×3

03×3 03×3 03×3 I3
03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3


Once we have the matrix F, we estimate Φ using the

third-order matrix exponential approximated by a Taylor se-
ries expansion: F∆t, F2∆t2, and F3∆t3. We then execute
PredictNextState on the IMU readings to propagate the
state using the fourth-order Runge-Kutta method. Following
the methodology described in the paper and reference code,
we adjust the transition matrix using the null-orientation and
orientation to rotate the gravity vector and update the Φ matrix
exponential. Once Φ is computed, We employ the following
partitioning for the covariance:

Pk|k =

[
PIIk|k PICk|k
PT
ICk|k PCCk|k

]
where PIIk|k is the 21×21 covariance matrix of the evolving
IMU state, PCCk|k is the 6N × 6N covariance matrix of the

camera pose estimation, and PICk|k is the correlation between
the errors in the IMU state and the camera pose estimates.

The covariance matrix of the propagated state can then be
given by:

Pk+1|k =

[
PIIk+1|k ΦkPICk|k
PT
ICk|kΦ

T
k PCCk|k

]
(17)

where the propagated covariance of the IMU state is:

PIIk+1|k = ΦkPIIk|kΦ
T
k +Qk (18)

The discrete-time noise covariance matrix Qk can be computed
as:

Qk =

∫ tk+1

tk

Φ(tk+1, τ)GQGΦ(tk+1, τ)
T dτ ≈ ΦkGQGΦT

k∆t

Finally, we enforce the symmetry of the covariance matrix
with Pk+1|k =

Pk+1|k+PT
k+1|k

2 , and refresh the null-space
values for orientation, position, and velocity of the IMU state.

D. Predict New State

Given that the states represent errors relative to the previous
state, it is necessary to integrate across all previous states in
order to predict the new state. The continuous dynamics of
the estimated IMU state, are linearized in Section II-C. To
accommodate the discrete-time measurements of the IMU,
state propagation is performed using a numerical integra-
tion function, specifically the 4th order Runge-Kutta method
(RK4).

I

2
I
G
˙̄q(t) =

[
−ω(t)× ω(t)
−ωT (t) 0

]
I
Gq̄

=:
1

2
Ω(ω(t)) I

Gq̄

G
ṖI(t) =

GvI(t)

Gv̇I(t) =
I

G
RTa(t)

ḃg(t) = nwg

ḃa(t) = nwa

The orientation, pose, and velocity are computed alongside
ω×. Utilizing the above equations, we calculate δq̄ ∗ δt which
defines the new state orientation. It is also essential to compute
the fourth-order Runge-Kutta (RK4) for velocity and pose.

I
Gq̄I = δq̄ ⊗ Î

Gq̄

δq̄ =

[
k sin

(
1
2θ

)
cos

(
1
2θ

)]
≈

[
1
2θ
1

]

E. State Augmentation

When new images are received, the state should be aug-
mented with the new camera state. The pose of the new camera
state can be computed from the latest IMU state:

C
Gq̂ = C

I q̂ ⊗ I
Gq̂

C
Gp̂ = Gp̂c + C(I

Gq̂)
T I p̂c

where C
Gq̂ is the quaternion of the new camera with respect to

the world frame, C
I q̂ is the quaternion of the new camera with

respect to the IMU frame, I
Gq̂ is the quaternion of the IMU

with respect to the world frame, C
Gp̂ is the position of the new

camera with respect to the world frame, p̂G is the position
of the IMU with respect to the world frame, and I p̂c is the
position of the new camera with respect to the IMU frame.

Therefore, as shown in the reference [2], the augmented
covariance matrix is:

Pk|k =

[
I21+6N

J

]
Pk|k

[
I21+6N

J

]T
J =

[
JI 06×6N

]
JI =

[
C(I

Gq̂) 03×9 03×3 I3 03×3

−C(I
Gq̂)

T [I p̂c]× 03×9 I3 03×3 I3

]
where N is the number of the camera states.

Eventually, the covariance is fixed to be symmetric:

Pk+1|k =
PIk+1|k + PT

Ik+1|k

2

F. Add Feature Observations

Upon receiving a new feature message, we add the features
to the map server. We iterate over all the features (stereo points
from the images) contained in the message. For each feature,
we verify its presence in the map server. If found, we update
the observations for the corresponding IMU message with a
matching ID. Then, the tracking rate is updated based on the
equation:

trackingRate =
trackedFeatures

stateFeatures + 0.00001

G. Measurement Update

The measurement update is a pivotal element of the Kalman
filter. It is responsible for computing the Kalman gain and
updating the state estimates, such as position, velocity, and
orientation. Initially, the Jacobian matrices H and r are
decomposed using QR decomposition (employing the Numpy
function in ”reduced” mode to enhance sparsity), thereby
minimizing computational load. The Kalman gain is com-
puted using the formula K = linearSolve(S,HP)T , with
S = HPHT + obs-Cov · I . This approach aligns with the
Kalman gain formulation presented in equation 29 of the
seminal MSCKF paper.

K = PTTHT
(
HPTTHT +Rn

)−1

The correction to the state is computed using equation,
expressed as ∆X = K · r. The ∆IMU comprises the first 21
elements of the ∆X . The quaternion representing the small-
angle change for the IMU (IMU − DQ) is derived from
the first three state components of ∆IMU using the small-
angle quaternion formula. The orientation is updated by the
quaternion multiplication of the previous orientation with the
new IMU −DQ. The remaining IMU state components, in-
cluding GyroBias, Velocity, AccelerometerBias, and Position,
are updated by adding the corresponding ∆IMU components.
Subsequently, the IMU rotation and translation components
relating to the IMU-to-Camera frames are updated using the
small-angle quaternion derived from the ∆IMU components.

After updating the IMU state components, we proceed to
update the camera states. This is done by iterating through
each camera state and applying the specific rotation and trans-
lation components of ∆X that correlate to each camera state.
The updates are computed using the small-angle quaternion
form and quaternion multiplication. Finally, to ensure the
symmetry of the state covariance matrix, we enforce it by
setting

Pk+1|k =
PIk+1|k + PT

Ik+1|k

2

II. TRAJECTORY ERROR EVALUATION

The estimated and ground truth trajectories are plotted in
both x-y and x-z as given below. The close alignment of these
trajectories signifies a highly accurate estimation.

−2 0 2 4

x [m]

−2

0

2

4

6

8

y
[m

]

Estimate

Groundtruth

Fig. 1: Estimated Trajectory Pose v/s Ground Truth Trajectory
(Top View)

−2 0 2 4

x [m]

−1

0

1

z
[m

]

Estimate

Groundtruth

Fig. 2: Estimated Trajectory Pose v/s Ground Truth Trajectory
(Side View)

We compute the Absolute Trajectory Error (ATE) statistics
using [4] and they are presented in TABLE 1. The anal-
ysis reveals that our estimated trajectory exhibits low ATE
RMSE (0.075 meters) and minimal mean and median errors.
Additionally, the small standard deviation indicates consistent
tracking performance throughout the experiment.

TABLE I: Absolute Trajectory Error Statistics

Parameter Mean Median RMSE Std Dev
Rotation 1.764 1.782 1.863 0.597

Scale 0.748 0.502 1.049 0.736
Translation 0.068 0.069 0.075 0.030

0 10 20 30 40 50 60 70

Distance [m]

−2

0

2

O
ri

en
t.

er
r.

[d
eg

]

yaw

pitch

roll

Fig. 3: Rotation Error

0 10 20 30 40 50 60 70

Distance [m]

−100

0

100

P
os

it
io

n
D

ri
ft

[m
m

]

x

y

z

Fig. 4: Translation Error

III. ACKNOWLEDGMENT

The author would like to thank Prof. Nitin Sanket, Teaching
Assistant, and Grader of this course RBE549- Computer
Vision.

REFERENCES

[1] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman
filter for vision-aided inertial navigation,” in Proceedings 2007 IEEE
International Conference on Robotics and Automation, 2007, pp. 3565–
3572.

[2] K. Sun, K. Mohta, B. Pfrommer, M. Watterson, S. Liu, Y. Mulgaonkar,
C. J. Taylor, and V. R. Kumar, “Robust stereo visual inertial
odometry for fast autonomous flight,” IEEE Robotics and Automation
Letters, vol. 3, pp. 965–972, 2017. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:3725704

https://api.semanticscholar.org/CorpusID:3725704
https://api.semanticscholar.org/CorpusID:3725704

[3] ——, “Vio github repository,” IEEE Robotics and Automation Letters,
2017. [Online]. Available: https://github.com/KumarRobotics/msckf vio

[4] Z. Zhang and D. Scaramuzza, “A tutorial on quantitative trajectory
evaluation for visual(-inertial) odometry,” in IEEE/RSJ Int. Conf. Intell.
Robot. Syst. (IROS), 2018.

https://github.com/KumarRobotics/msckf_vio

	Implementation Overview
	Initialize Gravity and Biases
	Batch IMU processing
	Process Model
	Predict New State
	State Augmentation
	Add Feature Observations
	Measurement Update

	Trajectory Error Evaluation
	Acknowledgment
	References

