
RBE/CS 549 Computer Vision
Project 4

Visual Inertial Odometry
Puneet Shetty
MS in Robotics

Worcester Polytechnic Institute
Email: ppshetty@wpi.edu

Edwin Clement
MS in Robotics

Worcester Polytechnic Institute
Email: eclement@wpi.edu

Abstract—This project develops an optimized Visual Inertial
Odometry (VIO) system utilizing data from a stereo camera and
an Inertial Measurement Unit (IMU) to enhance localization
accuracy while minimizing computational demands. Traditional
methods relying solely on stereo cameras are computationally
intensive and prone to failures in high-speed scenarios
due to motion blur. By integrating an IMU, our approach
maintains high performance even under rapid movements and
accelerations. This system employs a filter-based method using
the Multi-State Constraint Kalman Filter (MSCKF), selectively
tracking fewer features and leveraging mathematical techniques
to determine the relative poses of cameras, thereby efficiently
localizing the agent in its environment. The implementation
details and performance metrics of this stereo VIO system are
thoroughly documented in the subsequent sections.

Index Terms— Visual Inertial Odometry, Multi-State Constraint
Kalman Filter, Inertial Measurement Unit, Aerial Systems, Percep-
tion & Autonomy, SLAM

I. INTRODUCTION

This project’s main objective is to precisely extract scale
and depth from imagery, which is a difficult issue because
single-camera setups cannot offer depth information without
previous environmental context. In order to get around these
restrictions, we use a stereo camera system, which enables
feature matching between its two points of view to estimate
depth. Nevertheless, in situations where motion blur occurs—a
frequent problem in robotic applications—feature matching on
its own can be computationally taxing and inefficient.

We integrate an Inertial Measurement Unit (IMU) to address
these issues. With its six degrees of freedom (DoF) can mea-
sure both linear and angular accelerations, this gadget performs
exceptionally well in situations where typical cameras might
struggle due to fast motions or vibrations. IMUs can give
useful information in high-speed situations, but they can also
drift, or accumulate mistakes over time.

A strong multi-modal fusion framework is formed by the
synergy between the more stable but slower visual data from
cameras and the high-frequency, drift-prone IMU readings.
This fusion is essential for improving the camera’s depth
estimating skills and correcting drift in IMU data. By using

this combined method, we hope to solve important problems
in visual inertial odometry by providing an accurate and
dependable way to determine the posture of the camera and
subsequently retrace the depth from photos.

II. DATA

To evaluate our approach, we would use Machine Hall
01 easy (MH 01 easy), a subset of the EuRoC dataset.
Utilizing a 6-DoF sensor mounted on a quadcopter following
a predetermined path, the data was gathered. Vicon Motion
capture technology, which provides sub-millimeter accuracy,
served as the source of ground truth for the system.

III. IMPLEMENTED FUNCTIONS

The Multi-State Constraint Kalman Filter (MSCKF) imple-
mentation has initial code available. To finish the model’s
implementation, we made updates to the following routines
in the msckf.py Python file.

A. Initializing Gravity and Bias in IMU

The initialize_gravity_and_bias function is es-
sential for determining the Inertial Measurement Unit’s (IMU)
basic characteristics in relation to the world frame. First, the
function averages the first few data from the IMU message
buffer to get the angular and linear velocities of the IMU.
These angular velocity values are averaged to set the gyro-
scopic bias, provide a baseline for future changes, and account
for intrinsic sensor drift.

Concurrently, gravitational acceleration is used as a refer-
ence point to calculate the initial orientation of the IMU with
respect to the world frame. Through the computation of the
required rotation to synchronize the IMU’s frame of reference,
the function aligns the downward-pointing gravity vector with
the normalized average of the linear acceleration measure-
ments, which is assumed to equal the standard gravitational
force of 9.81 m/s2 with that of the world.

Quaternion form, which effectively captures the rotational
difference between the IMU’s original arbitrary orientation
and the right alignment with the global frame, is used to

express this rotational alignment. The orientation state of the
IMU is then set to the computed quaternion. This quaternion
is integrated with other crucial factors by the state vector,
represented by the symbol XI :

• Iq: Quaternion representing the rotation from the inertial
frame to the body frame (IMU frame).

• bg and ba: Biases for the gyroscope and accelerometer,
respectively.

• GI
v and GI

p: Velocity and position of the body frame
(IMU) in the inertial frame.

This comprehensive initialization ensures that subsequent nav-
igational computations are accurately aligned.

B. Batch IMU processing

The batch_imu_processing function controls, within
a given time limit, the messages in the IMU message buffer.
Every IMU message is processed by applying the process
model to the states that have been saved until the IMU
timestamp coincides with the time boundary. The function
applies the process model iteratively for each message inside
the time bound, making sure that all IMU data up to the
boundary is used to update the state as described in Section
C. In order to preserve buffer efficiency and system accuracy,
the function updates the current IMU identification to that of
the next state when the time limit is reached and clears the
buffer of any messages that are no longer needed.

C. Process model

The process_model function encapsulates the prediction
step of the Extended Kalman Filter for an IMU within a
visual-inertial odometry system. The goal of this function is
to propagate the IMU’s state forward in time based on the
current state and the IMU measurements of angular velocities
and accelerations.

1) State Transition and Noise Covariance Matrices (F
and G):
• The state transition matrix F captures the dynamics of

how the state evolves over time due to system inputs
and is defined by the IMU’s kinematic equations. It is
constructed as follows:

F =

−[ω×] −I3 03 03
03 03 03 03

−C(qT)∂[a]×∂a 03 03 −C(qT)
03 03 03 03
03 03 I3 03
03 03 03 03

• The noise covariance matrix G maps the process noise

to the appropriate state variables and is constructed to

reflect the dimensions and effects of gyroscopic and
accelerometric noise.

G =

−I3 03 03 03
03 I3 03 03
03 03 −C(qT) 03
03 03 03 03
03 03 03 I3
03 03 03 03
03 03 03 03

2) Matrix Exponential Approximation (ϕ):

• The matrix exponential of F , denoted as ϕ, is approx-
imated using a third-order Taylor expansion. This is
crucial for integrating the continuous-time system over
a discrete time step, which in this case is performed
using the Runge-Kutta method:

ϕ ≈ I + F∆t+
1

2
F 2∆t2 +

1

6
F 3∆t3

Here, ∆t is the time step, and F 2, F 3 represent the
matrix F squared and cubed, respectively.

3) State Propagation (Runge-Kutta Integration):
• The RK4 integration method is applied to the IMU’s

orientation, velocity, and position, using the corrected
IMU measurements (gyroscopic and accelerometric
data) to compute the new state estimates at time t+∆t.

• The specific RK4 steps are not detailed here, but the
process involves calculating intermediate states and
then taking a weighted average of these to achieve the
final state prediction.

4) Covariance Propagation:
• The state covariance is updated using the equation:

PIIk+1|k = ΦkPIIk|kΦ
T
k +Qk

Where PIIk+1|k is the covariance of the IMU state
at the next time step, Φk is the discrete-time state
transition matrix (approximated by ϕ), and Qk is the
process noise covariance, which can be integrated over
the time step as shown previously.

In summary, the process_model function predicts the
IMU’s state at a future time instant based on the current state
and the latest measurements. It updates both the state estimates
and their associated uncertainties (covariances), preparing the
filter for the next measurement update cycle.

D. Predict new state

The predict_new_state function within the visual-
inertial odometry process model employs a 4th order Runge-
Kutta numerical integration scheme to update the estimated
IMU state, encompassing orientation, velocity, and position.
This method strikes a balance between computational effi-
ciency and the accuracy required for VIO applications. Dis-
cretization of the continuous state equations through Runge-
Kutta integration allows for prediction of the new state at
discrete time intervals.

The function is described as follows:

1) Orientation Update: The orientation of the IMU is rep-
resented by a quaternion q. The integration of quaternions
is performed in a way that preserves their norm, using the
omega matrix Ω(ω):

Ω(ω) =

[
−[ω×] ω
−ωT 0

]
2) Velocity and Position Update: Velocity and position are

updated using the 4th order Runge-Kutta method:

k1 = f(tn, yn)

k2 = f

(
tn +

∆t

2
, yn + k1

∆t

2

)
k3 = f

(
tn +

∆t

2
, yn + k2

∆t

2

)
k4 = f(tn +∆t, yn + k3∆t)

By substituting the functions of velocity and position in
place of y, the updates for the IMU state are computed.

3) Integration into predict_new_state Function:
The function follows these steps:
• Compute angular velocity and acceleration for the

Runge-Kutta integration.
• Apply the 4th order Runge-Kutta integration to update

the IMU’s orientation using the Ω matrix.
• Apply the same integration method to update the

IMU’s velocity and position based on their kinematic
equations.

• Convert the resulting orientation into quaternion form
to maintain the unit norm property.

• Update the velocity and position states with the new
estimates from the Runge-Kutta integration.

• Assign these new values as the current state for the
subsequent state prediction.

This method advances the IMU’s state in discrete steps with
precision, adeptly handling the nonlinear nature of IMU state
changes, making it highly suitable for precise motion tracking
required in VIO tasks.

E. State Augmentation

In the state_augmentation function, we compute the
state covariance matrix to propagate the uncertainty of the
state. This process starts by obtaining the IMU and camera
state values corresponding to the rotation from the IMU to
the camera and the translation vector from the camera to the
IMU. A new camera state is then added to the state server
utilizing the initial IMU and camera states.

The state augmentation Jacobian, denoted as J , is updated
as follows:

Jr =

[
C
(
q⊤
I

)
03×9 03×3 I3 03×3

−C
(
q⊤
I

)
[pc×] 03×9 I3 03×3 I3

]
where C(q⊤

I) is the rotation matrix from the quaternion, and
[pc×] is the skew-symmetric matrix of the camera position
vector.

Next, we resize the state covariance matrix and propagate
the covariance of the IMU state. The full propagation of the
uncertainty is represented as:

Pk+1|k =

[
PIIk+1|k ΦkPICk|k

P⊤
ICk|k

Φ⊤
k PCCk|k

]
Finally, the augmented covariance matrix Pk|k is updated as:

Pk|k =

(
I21+6N + δ

J

)
Pk|k

(
I21+6N + δ

J

)T

Afterward, the updated covariance matrix is stored back in the
server.

The function also updates the camera pose using the rela-
tionship between the IMU and camera frames. With the new
camera pose, the function appends this pose to the state vector.
The covariance matrix P , which encapsulates the system’s
uncertainty, is augmented using the Jacobian J obtained from
the above calculations.

F. Add feature observations
The add_feature_observations In order to manage

the feature data extracted from camera images, function is
essential. Prior to processing each feature, this function deter-
mines the current IMU state ID, counts the total number of fea-
tures, and receives a feature message as input. Subsequently,
it adds each feature, one at a time, to the map server; features
that are already there are updated with new observations, and
those that are not are added with a unique feature ID. This
makes sure that all features are consistently tracked across
all states, and that the map server is updated as needed. In
addition, the function computes the tracking rate, which is
the ratio of tracked features to all features. This yields useful
metrics regarding the effectiveness and precision of the feature
tracking procedure.

G. Measurement update
The measurement_update function in a visual-inertial

odometry system updates the state estimates and state co-
variance matrix utilizing the measurement model. This model
incorporates the Jacobian matrix H and measurement noise to
refine the state estimates based on observed measurements.

The measurement update process involves several steps:
1. Compute the Kalman gain:

K = PH̃T
(
H̃PH̃T +Rn

)−1

where K is the Kalman gain, P is the state covariance
matrix, H̃ is the measurement Jacobian matrix, and Rn is
the measurement noise covariance matrix.

2. Update the state estimate using the Kalman gain and the
innovation vector rn:

∆X = Krn

where ∆X represents the change in the state estimate.
3. Update the state covariance matrix to reflect the reduced

uncertainty after incorporating the measurement:

Pk+1|k+1 = (Is −KH)Pk+1|k (Is −KH)
T
+KRnK

T

where Is is the identity matrix of appropriate size.
4. QR decomposition is used to reduce the complexity of

the Jacobian matrix H , thus reducing the computation required
for the update:

Hx =
[
Q1 Q2

] [Rh

0

]
= Q1R1

where Q1 and Q2 are unitary matrices whose columns form
bases for the range and nullspace of Hx, respectively, and Rh

is an upper triangular matrix from the QR decomposition of
H .

5. The final residual r is computed as the difference between
the measurement z and the estimated measurement ẑ, which
depends linearly on the state error:

r = z − h(x̂, f) = HxX̃ +Hf f̃ + n

where Hx is the Jacobian matrix mapping the state error to
the measurement domain, Hf is the feature Jacobian, X̃ is the
state error, f̃ is the feature position error, and n is the noise.

6. The camera poses are updated, and these poses are
appended to the state vector. Accordingly, the state covariance
matrix P is augmented to reflect the new information from
the measurements.

7. The function ultimately projects the residual r onto the
left nullspace of the matrix Hf , ensuring the residual is inde-
pendent of the errors in the feature coordinates, allowing the
EKF update to be performed optimally except for inaccuracy
caused by linearization.

IV. RESULTS & ANALYSIS

Important insights into the visual-inertial odometry process
are revealed by the Multi-State Constraint Kalman Filter
(MSCKF) implementation findings, especially when using
camera observations for recursive state estimation. It is noted
that misleading local minima and inconsistent results can
result from the non-linear character of the measurement model
and the camera data’s sensitivity to noise. Incorporating a
feature depth parameterization into the measurement model
efficiently addresses the issues arising from mistakes in
linearization. Further restrictions on feature tracking over
consecutive frames are seen; these are frequently caused by
noise, a narrow field of vision, and occlusions, which might
cause the feature tracking algorithm to malfunction.

Absolute Trajectory Error for Rotation (RMSE):
89.38995324911025

Absolute Trajectory Error for Translation (RMSE):
0.08209740661564874

The examination of data from the Machine Hall 01 easy (MH
01 easy) subset of the EuRoC dataset validates the practical
implementation of these results. The trajectory output is in
good agreement with the expected trajectory, supporting the
applicability of the MSCKF technique in this situation. In
addition to the code files, the related video output provides a
visual depiction of the system’s functionality, which facilitates

0 10 20 30 40 50 60 70

Distance [m]

−100

0

100

200

P
os

it
io

n
D

ri
ft

[m
m

]

x

y

z

Fig. 1. Translation Error

−2 0 2 4

x [m]

−1

0

1

z
[m

]

Estimate

Groundtruth

Fig. 2. Trajectory Comparison (Side)

the assessment and examination of the MSCKF implementa-
tion in an actual environment.

V. CONCLUSION

In this project, we overcame many implementation obstacles
and improved system performance by effectively implement-
ing and optimizing important functionalities inside a stereo
visual inertial odometry framework. To ensure accurate and
computationally efficient posture prediction, we concentrated
our efforts on integrating and optimizing different parts of
the Multi-State Constraint Kalman Filter (MSCKF), such as
state augmentation and exact feature tracking. The research
successfully addressed issues with data fusion and system scal-
ability, demonstrating the efficient application of sophisticated
mathematical models and algorithmic techniques in real-time
navigation scenarios. In addition to reducing the computing
load, this study lays the groundwork for future advancements
in optical inertial odometry systems.

REFERENCES

[1] Ke Sun, Kartik Mohta, Bernd Pfrommer, Michael Watterson, Sikang Liu,
Yash Mulgaonkar, Camillo J. Taylor, and Vijay Kumar, ”Robust Stereo
Visual Inertial Odometry for Fast Autonomous Flight,” in arXiv preprint
arXiv:1712.00036, 2018.

[2] Anastasios I. Mourikis and Stergios I. Roumeliotis, ”A Multi-State Con-
straint Kalman Filter for Vision-aided Inertial Navigation,” in Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA),
2007, pp. 3565-3572.

[3] Kumar Robotics, ”msckf vio,” GitHub repository, [Online]. Available:
https://github.com/KumarRobotics/msckf vio.

[4] RBE 549, ”Project 4: Spring 2024,” course webpage, 2024. [Online].
Available: https://rbe549.github.io/spring2024/proj/p4/.

−2 0 2 4

x [m]

−2

0

2

4

6

8

y
[m

]

Estimate

Groundtruth

Fig. 3. Trajectory Comparison (Top)

0 10 20 30 40 50 60 70

Distance [m]

−50

0

50

O
ri

en
t.

er
r.

[d
eg

]

yaw

pitch

roll

Fig. 4. Rotation Error

0 10 20 30 40 50 60 70

Distance [m]

0

1

2

3

4

S
ca

le
D

ri
ft

[%
]

scale

Fig. 5. Scale Error

8.06 16.12 24.18 32.25 40.31

Distance traveled [m]

0

20

40

60

80

100

T
ra

n
sl

at
io

n
er

ro
r

[%
] Estimate

Fig. 6. Box graph of Translation Error (Percentage)

8.06 16.12 24.18 32.25 40.31

Distance traveled [m]

0

20

40

60

80

Y
aw

er
ro

r
[d

eg
]

Estimate

Fig. 7. Box Graph of Yaw Error

