
RBE 549 Project 4: Classical Visual Inertial
Odometry

Amrit Krishna Dayanand, Venkata Sai Krishna Bodda
MS Robotics Engineering

WPI
Email: adayanand@wpi.edu, vbodda@wpi.edu

I. INTRODUCTION

This project primarily focuses on performing odometry
by combining data from an inertial measurement unit and
a stereo camera. In phase 1, this is accomplished through
a classical approach, employing a filter-based stereo
Vision-aided Odometry using a multi-state Constraint
Kalman Filter (MSCKF). The primary objective is
to precisely determine the robot’s states—orientation,
position, and velocity—and to visualize them. Eight
methods were implemented in the starter code, and the
results are visualized using the Pangolin visualizer.

Index: IMU, Stereo Camera, Multi-state Constraint
Kalman Filter(MSCKF), Visual Inertial Odometry, Stereo
Camera.

II. CLASSICAL APPROACH USING MSCKF

Fig. 1. pipeline

A. Initialize Gravity and Bias

The rotation and acceleration measurements were taken
using a 6 degrees of freedom (DOF) inertial measurement unit
(IMU). This IMU requires calibration to correct for biases.
These biases are determined by averaging stationary readings,
and then this bias is subtracted from the actual readings. Once
the biases are subtracted, the ideal readings for the gyroscope
and accelerometer, while stationary, should be [0, 0, 0] and
[0, 0, -g] respectively, with minor fluctuations.

The function ”initialize gravity and bias” is responsible for
initializing the IMU’s gravity and bias, as well as establishing
the initial orientation of the robot based on the initial IMU
readings. It accomplishes this by computing the gyro bias and
estimating gravity within the IMU frame through the averaging
of angular velocity and linear acceleration readings from the

Fig. 2. State Vector

IMU messages. Ensuring alignment with the inertial frame,
the initial orientation is set for consistency. This systematic
approach guarantees a robust commencement for the Visual-
Inertial Odometry system.

B. Batch IMU Processing

IMU messages from the sensor are read using
Batch IMU Processing function and are processed until
next batch of images are published from the stereo camera.
The state vector employed for predicting the subsequent
states encompasses various parameters associated with both
the camera and IMU systems. These include quaternion
representations for rotation, gyroscope and accelerometer
biases, positional coordinates, and velocities.

Batch IMU processing is responsible for propagating the
state of IMU by processing IMU measurements within a time
bound before next batch is available. The function iterates
through the IMU messages in the buffer, disregarding those
already processed and halting at the specified time limit.
For each unprocessed IMU message, the function applies the
process model to adjust the IMU state using measurements
of angular velocity and linear acceleration. It updates the
timestamp and ID of the IMU state, removing processed
messages from the buffer. This process guarantees precise state
propagation and synchronization between the IMU and Visual
Odometry components, playing a pivotal role in achieving
dependable sensor fusion and localization.

C. Process Model

The ”process model” function propagates the system state
and covariance using a 4th order Runge-Kutta integration
method. It extracts pertinent information from the current sys-
tem state, notably from the IMU (Inertial Measurement Unit),
encompassing orientation, velocity, position, and gyroscope
and accelerometer biases. Additionally, it calculates the time
step based on the provided time and IMU state timestamp.

The code calculates the discrete transition matrix (F) and
noise covariance matrix (G) to model system dynamics and



Fig. 3. DYnamics of an IMU

noise characteristics. It approximates the transition matrix
using a 3rd order matrix exponential method, considering a
small time step (dt). It predicts the new system state via a
4th order Runge-Kutta integration method, updating the state
based on gyroscope and accelerometer measurements.

The transition matrix Phi is adjusted to accommodate the
null space, while the state covariance matrix (Q) is updated
using Phi, G, and the continuous noise covariance matrix.
Covariance between IMU and camera states is also adjusted.
Finally, symmetry is ensured in the state covariance matrix by
averaging it with its transpose. The IMU state is then updated
with current orientation, position, and velocity values, ready
for the next iteration of state estimation.

D. Predict New State

The ”predict new state” function executes a prediction
step employing the Extended Kalman Filter (EKF). This step
involves forward integrating IMU measurements, gyroscope,
and accelerometer, over a time step (dt) to estimate the
system’s new state, comprising IMU orientation, velocity,
and position. Integration is conducted using a fourth-order
Runge-Kutta method with adaptive time step. Additionally, it
calculates intermediate variables (k1, k2, k3, k4) using gyro-
scope measurements and the current IMU state, subsequently
updating IMU orientation, velocity, and position based on
these intermediate variables.

E. State Augmentation

The ”state augmentation” function incorporates a new cam-
era state into the state server, adjusting the covariance matrix
and ensuring symmetry upon adding new images. It computes
the rotation and translation from the IMU to the camera,
updates the camera state, and adjusts the covariance matrix
accordingly. This step is pivotal for upholding consistency
between IMU and camera states in the INS implementation.

Fig. 4. State Augmentation Jacobian

F. Adding Feature Observation

The ”add feature observations” function integrates feature
observations from a new image frame into the map server of a

Fig. 5. Stereo Measurement Calculation

Fig. 6. Feature’s Position in Left and right cameras

visual-inertial odometry system, generating new map features
for unseen ones, updating observations for existing features,
and calculating the tracking rate.

G. Measurement Update

The ”measurement update” function utilizes measurements
from visual features and inertial sensors, decomposing the
Jacobian matrix H using QR decomposition to reduce compu-
tational complexity when the number of rows in H exceeds the
number of columns, resulting in a reduced-size H thin matrix
and a transformed measurement vector r thin. It computes the
Kalman gain using the reduced-size H thin matrix, the state co-
variance P, and the observation noise covariance to determine
the weight of measurements in the update step. The error in the
state, represented by delta x, is computed by multiplying the
Kalman gain with the transformed measurement vector r thin,
which is then divided into sub-vectors for updating IMU and
camera states separately. IMU state is updated using small-
angle quaternion operations, while camera states are updated
using small-angle quaternion operations based on the sub-
vector delta x cam. The state covariance is updated using the
Kalman gain and the reduced-size H thin matrix to ensure
symmetry.

III. RESULTS

The Rotation and orientation values are sent to Pangolin
visualizer allowing it to display them alongside the stereo
camera output.

The RMSE absolute trajectory error (ATE) quantitatively
measures the difference between the estimated and ground
truth trajectories. Since the estimated and ground truth frames
may not be the same, an SE(3) alignment is first performed,
followed by an RMSE calculation as follows. We compare
the two trajectories in terms of position and rotation, which



are summarized in table I. The RMSE ATE is useful because
it makes it easy to compare trajectories, but the metric is
sensitive to the time when the error occurs.

ϵATE =
1

N

N∑
i=1

√√√√ 1

K

K∑
k=1

∥∆xk,i∥2 (1)

Type RMSE ATE

Position 0.08548
Rotation 154.34993

TABLE I
RMSE ATE OF ESTIMATED AND GROUND TRUTH ODOMETRY FOR

POSITION AND ROTATION

Fig. 7. Output from pangolin viewer

Fig. 8. The relative translation error of projected path with respect to ground
truth

Fig. 9. The relative yaw error of projected path with respect to ground truth

Fig. 10. Error in rotation of projected path w.r.t. ground truth

Fig. 11. Estimated and ground truth trajectory (top)

Fig. 12. Estimated and ground truth trajectory (side)



Fig. 13. Error between estimated and ground truth trajectories


	Introduction
	Classical Approach using MSCKF
	Initialize Gravity and Bias
	Batch IMU Processing
	Process Model
	Predict New State
	State Augmentation
	Adding Feature Observation
	Measurement Update

	Results

