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Abstract—In this project, we implement a visual-inertial odom-
etry system that fuses data from IMUs and cameras to estimate
the motion of a robot using. In Phase 1 we implement the stereo
Multi-State Constraint Kalman Filter (MSCKF) to estimate the
state of the robot, using stereo cameras, evaluated on the EuRoC
dataset.

I. PHASE 1

A. Initializing Gravity and Bias

A six-degree-of-freedom IMU, used to measure rotation and
acceleration using a gyroscope and accelerometer, necessitates
calibration to correct bias in the sensors. This is done by calcu-
lating the mean of a set of stationary readings to determine the
bias, since the only force acting on the accelerometer is gravity
and there should be no torques acting on the gyroscope. The
gyro bias is then subtracted from all subsequent gyroscope
readings, and the gravity is initialized as [0,0, -gravity norm].
This estimation of gravity is not perfect, so the gravity vector
is updated during the filter process.

B. Batch IMU Processing

Since the features and the IMU data do not come in at the
same rate, we want to batch IMU messages. In practice, when
feature is received, all IMU messages in the IMU message
buffer which have a timestamp prior to the feature’s timestamp
are processed using the IMU process model. This is ensures
that the IMU state is updated to the time of the feature
observation.

C. Process Model

Batch processing is responsible for processing IMU mes-
sages and updating the IMU state within a specified time
frame. It iterates through the IMU messages, discarding those
already processed and stopping at the time bound. For each
unprocessed message, it applies the process model to up-
date the IMU state based on angular velocity and linear
acceleration measurements. The function updates the IMU
state’s timestamp and ID, and removes processed messages
from the buffer. This function is crucial for accurate state
propagation and synchronization between the IMU and Visual
Odometry components, contributing to reliable sensor fusion
and localization.

Mathematically, the process model can be described as
follows [1]:
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where
I

G
˙̂q(t) is the unit quaternion which described the

rotation from the global from (G) to the IMU frame (I),
ω̂ ∈ R3 and â ∈ R3 are the IMU measurements of angular
velocity and acceleration respectively with the biases removed.
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where ⌊ω̂×⌋ is the skew symmetric matrix of ω̂.

Based on Equation 1, we get the following linearized
continuous dynamics for the error IMU state:
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is the noise vector and

F and G are the state transition matrix and the noise matrix
respectively.
F is given by:
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and G is given by:
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D. Predict New State

When new images and IMU readings are received, we pre-
dict the new state using an Extended Kalman Filter, which uti-
lizes a 4th order Runge-Kutta integration to update the IMU’s
state based on new accelerometer and gyroscope data. This
function calculates the norm of the gyroscope measurements
and sets up the Omega matrix to update the IMU’s orientation
quaternion. Depending on the gyroscope norm, it adjusts the
quaternion calculation for numerical stability. The method
computes intermediate values for velocity and position using
the Runge-Kutta method, applying transformations based on
the IMU’s current state and corrected acceleration. The final
updated state, including orientation, velocity, and position, is
then recalculated and stored back into the state server, readying
the system for subsequent updates.

E. State Augmentation

State Augmentation adds a new camera pose and updates
the covariance matrix when a new image is received

In visual-inertial odometry systems, the state augmentation
function is crucial for integrating the most recent camera state
updates based on the latest IMU data. The function specifically
adjusts the camera’s position (GpC) and orientation (CGq)
using the previous IMU state information. The pose of the
camera is computed using the following equations [2]:

GpC = GpI + C(CGq)
T IpC

CGq = CIq ⊗ IGq

Where GpC represents the global position of the camera,
GpI is the global position of the IMU, C(CGq)

T is the
rotation matrix derived from the quaternion describing the
camera’s orientation relative to the global frame, and IpC is
the relative position vector from the IMU to the camera. The
quaternion operation ⊗ signifies quaternion multiplication,
which is used to combine the orientation of the IMU (IGq)
and the relative orientation from the IMU to the camera (CIq).

Following the calculation of the new camera pose, the state
covariance matrix P is augmented to reflect the updated state
uncertainty. This is achieved through a Jacobian matrix J ,
which maps the influence of the new camera state onto the
overall system uncertainty:
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The updated state covariance matrix Pk|k is computed as:

Pk|k = JPK|KJT

This matrix J effectively accounts for the effects of camera
motion relative to the IMU, ensuring that updates in camera
position and orientation are accurately reflected in the state
covariance.

F. Adding Feature Observation

After a feature is detected, it is added to the feature map
server, which is done by getting the current IMU state ID and
number of features in the map server, and iterating over all of
the new features, creating new features for unseen features and
updating existing features. After, the tracking rate is updated.

G. Measurement Update

For the measurement update, we first decompose the Jaco-
bian to reduce its computational complexity using QR decom-
position. We then calculate the residual between the predicted
and observed feature positions, and compute the Kalman gain
and update the state and covariance. The residual is calculated
by subtracting the predicted feature position from the observed
feature position. The state is then updated by adding the
Kalman gain multiplied by the residual, and the covariance
is updated by subtracting the Kalman gain multiplied by the
observation model from the identity matrix. Also, the IMU
state, extrinsics, and camera states are updated by applying
small angle quaternion operations.

H. Results and Discussion

The graphs and images are the results of running our VIO
on the MH 01 easy EuRoC dataset are shown in Appendix
A. The trajectory and relative errors throughout the run are
shown.
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APPENDIX A
CLASSICAL VIO RESULTS
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Fig. 1: Relative Translation Error Percentage
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Fig. 2: Relative Translation Error
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Fig. 3: Relative Yaw Error
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Fig. 4: Rotation Error
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Fig. 5: Scale Error
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Fig. 6: Trajectory Side
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Fig. 7: Trajectory Top
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Fig. 8: Translation Trror


