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I. INTRODUCTION

In this project, we complete seven functions in the given
starter code that implements the work in [2]. We only test the
code on the ”Machine Hall 01” data from the EuRoC MAV
Dataset [4]. In this episode, drone starts stationary, then it flies
around before landing back to the same spot.

II. INITIALIZE GRAVITY AND BIAS

Since, the start of the data includes a brief period where
the drone is stationary, we take the first 200 readings, average
them, and use this to offset the gyroscope bias and gravity
vector for the accelerometer sensor.

Gyroscope bias is set to the average values of the gyro-
scope readings as [bavg−gx, bavg−gy, bavg−gz]. Accelerometer
gravity vector’s z axis is set to the norm of the average
accelerometer readings as [0, 0,−gravityavg−norm]. Finally,
the initial orientation of the IMU is initialized to be the vector
between average accelerometer readings and the gravity vector.

III. BATCH IMU PROCESSING

In this function, we read the the IMU readings(gyroscope
and accelerometer) from the buffer, and send do processing
on them using the process_model function.

IV. PROCESS MODEL

In this function, we call the predict_new_state func-
tion to estimate the next step of the IMU state (this can be
thought of as step 1 of a Kalman Filter), then update the error
covariance for the next step (this can be thought of as step 2
of a Kalman Filter).

Below is the dynamics model of the IMU followed.
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Error dynamics of the IMU model is as follows. This model
is used to update the state covariance matrix. In implementa-
tion, we use the 3rd order approximation. x̃I is the IMU state
and nI is the Gaussian noise.
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Calculate discrete time noise covariance matrix, Φk, and

continuous time noise covariance matrix, Qk.
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Qk =

∫ tk+1

tk

Φ (tk+1, τ)GQGΦ (tk+1, τ)
⊤
dτ (15)



Propagated covariance of the IMU state is updated as
follows.

PIIk+1|k = ΦkPIIk|kΦ
⊤
k +Qk (16)

V. PREDICT NEW STATE

This function is called by the previous process_model
to estimate the next IMU state given the bias-adjusted angular
velocity and linear acceleration measurements. This function
approximates the next state by integrating the model for a time
step dt using 4th order Runge-Kutta integration, however, in
the original MSCKF paper, authors use the 5th order Runge-
Kutta integration [1].

VI. STATE AUGMENTATION

In this function, we augment the state covariance ma-
trix (calculated in process_model) with incoming camera
states.
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VII. ADD FEATURE OBSERVATIONS

In this function, we iterate over the tracked and new
features. Each feature has its own ID and is associated to a
state ID. If a feature existed for earlier frames, they are used
to enhance tracking. If not, it is added to the map to be looked
up in later frames.

VIII. MEASUREMENT UPDATE

This function takes measurement matrix, H, and residual
matrix, r. It computes the update part of the Kalman Filter
(calculating the gain, updating the state estimation, and updat-
ing the state covariance matrix).

Kalman Gain is computed as follows (Kalman filter step 3).

K = PTT
H

(
THPTT
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)−1
(21)

Correction to the state estimation is computed as follows
(Kalman filter step 4).

∆X = Krn (22)

State covariance matrix is updated as follows (Kalman filter
step 5).

Pk+1|k+1 = (Iξ −KTH)Pk+1|k (Iξ −KTH)
T
+KRnK

T

(23)

IX. RESULTS

The calculated trajectory length is 80.62621184 meters.
Following figures and tables show the trajectory follow-
ing performance. All of these results are generated using
rpg_trajectory_evaluation tool as mentioned in [3].
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Fig. 1. MSCKF VIO position estimate vs. ground truth in the XY plane
(top/birds eye view)
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Fig. 2. MSCKF VIO position estimate vs. ground truth in the ZX plane (side
view)
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Fig. 3. Position tracking error (in meters) over distance travelled (in meters)
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Fig. 4. Position tracking error (in percentage) over distance travelled (in
meters)

0 10 20 30 40 50 60 70

Distance [m]

−100

0

100

P
o
si

ti
on

D
ri

ft
[m

m
]

x

y

z

Fig. 5. Position tracking drift error (in millimeters) over distance travelled
(in meters)
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Fig. 6. Rotational tracking error (in degrees) over distance travelled (in
meters)
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Fig. 7. Yaw tracking error (in degrees) over distance travelled (in meters)
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Fig. 8. Scale drift error (in percentage) over distance travelled (in meters)

Absolute Error Statistics
Statistic Translational

(Meters)
Rotational
(Degrees)

Maximum 0.16513240m 3.48515797◦

Mean 0.06423876m 1.74583618◦

Median 0.06085964m 1.83840256◦

Minimum 0.00592799m 0.48334253◦

RMSE 0.07075978m 1.86783709◦

Standard Deviation 0.02967033m 0.66398147◦

X. DISCUSSION AND CONCLUSION

Our results show close tracking of pose (both position and
orientation) throughout the episode. In saving the results to
text files for generating graphs, we used the Rotation class
from scipy.spatial.transform package for convert-
ing from rotation matrix to quaternions. This gave use the
rotation on the correct format as opposed to to_rotation
function from utils.py.

One possible research area for improving upon the classical
VIO methods would be to combine RGB and event cameras
together to obtain jello-free frames, thereby improving track-
ing of features across frames in fast moving bases.
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