
1

RBE/CS-549: Project 4 - Classical approach for
Visual Inertial Odometery

Dhrumil Sandeep Kotadia, Dhiraj Kumar Rouniyar, Krunal M. Bhatt

I. INTRODUCTION

In the project 4, we aim to learn and implement Visual
Inertial Odometry stack from scratch. As we know a single
camera struggles to estimate the scale of the environment. We
combining visual data with inertial , can estimate the scale,
providing a more accurate understanding of the environment.
Cameras also struggle with motion blur when the camera
is in motion. IMU performs well under these conditions.
Hence, fusing the data from both the IMU and the camera
can facilitate wider range of applications.

In the first phase we implement a traditional approach to
fusing visual and inertial data to obtain Odometry. We imple-
mented [1] from Dr. Vijay Kumar’s lab which is a phenomenal
work on VIO attaining 20 m/s autonomous flight using the
VIO approach. We also refer to [2] seminal MSCKF paper
for a robust understanding of the mathematical model and the
fundamentals. Fig. 1 shows the structure of the code base that
is used. Boxes marked with a pencil icon are implemented
from scratch.

Fig. 1: Pencil icon indicates the functions implemented from
scratch

II. PHASE1: CLASSICAL APPROACH

We are using the Machine Hall 01 dataset, a subset of the
EuRoC dataset, to test our implementation. Data is collected
using a VI Sensor carried by a quadrotor flying a trajectory.
The ground truth is a sub-mm accurate Vicon Motion Capture
system data. In this section the following sub-sections define
the process of estimating a trajectory using VIO. The final sub-
section talks about the error analysis between the ground truth
and the estimated trajectory. We perform an SE(3) alignment
before computing the error.

The authors are with the Robotics Engineering Department of Worcester
Polytechnic Institute, Worcester, MA 01609 USA(email: dkotadia@wpi.edu;
dkrouniyar@wpi.edu; kmbhatt@wpi.edu)

A. Initialization of Gravity and Bias

Calibration is needed to account for the bias in a 6-DoF
IMU used for gyroscope and accelerometer measurements. We
calculate the bias by taking mean of the stationary readings
and subtract it from subsequent readings. [0, 0, 0] should be
the gyroscope reading, ideally, but it might have negligible
fluctuations. We initialize the gravity g as the norm of the
first 200 readings, as [0, 0, gnorm].

The function ”initialize gyro and bias” initializes pa-
rameters for IMU. It also initializes the initial orientation for
the robot based on few initial readings. It averages the angular
velocity and linear acceleration values from the IMU. Initial
Orientation is set to be consistent with the inertial frame.

B. Batch IMU Processing

We want to first process all the IMU messages received prior
to the new feature’s time stamp, when we receive a new fea-
ture. We use the following state vector for estimating the next
states consisting of states related to camera and IMU, includ-
ing quaternion for rotation, bias for gyroscope and accelerome-
ter, position and velocity. The ”batch imu processing” func-
tion propagates the state of IMU within specified time bound.
It iterates through the IMU buffer. For each unprocessed IMU,
this function applies the process model to update the state
based on linear acceleration and angular velocities.

xI = [IGq
T bTg

GvTI bTa
GpTI

I
Cq

T IpTC]
T (1)

IMU state’s timestamp and ID are updated, and the pro-
cessed messages are removed.

C. Process Model

The function ”process model” sends the system state and
covariance using a 4th order Runge-Kutta integration method.
It takes the current system state, and then calculates the time
step based on the provided time and IMU state time. The
following equation models the IMU system in continuous time.

G
I
˙̄q =

1

2
Ω(ω(t))GI q̄(t),

ḃg(t) = nwg(t),
Gv̇I(t) =

Ga(t),

ḃa(t) = nwa(t),
GṗI(t) =

GvI(t)

(2)

Here, G
I
˙̄q is the quaternion describing the rotation from

global frame G to IMU frame I. We also have the ω(t) =
[ωx, ωy, ωz]

T , rotational velocity in IMU frame. Also,

mailto:dkotadia@wpi.edu
mailto:dkrouniyar@wpi.edu
mailto:kmbhatt@wpi.edu

2

Ω(ω) =

[
−⌊ωx⌋ ω
−ωT 0

]
(3)

⌊ωx⌋ =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (4)

We can write accelerometer and gyroscope measurements,
ωm and am as

am = I
GR(Ga− Gg + 2⌊ωGx⌋GvI + 2⌊ωGx⌋2GpI) + ba + na

(5)

ωm = ω + bg + ng (6)

Here, I
GR is the rotation matrix calculated from quaternion

G
I q̄. Now, applying expectation operator to equation 1, we get
the values of next state of IMU as:

G
I
˙̄q =

1

2
Ω(ω̂(t)

G
I)ˆ̄q,

˙̂
bg = 03X1,

G ˙̂vI = CT
˙̂q
â− 2⌊ωGx⌋Gv̂I + ⌊ωGx⌋2Gp̂I + Gg,

˙̂
ba = 03X1,
G ˙̂pI = Gv̂I

(7)

We now have the linearized continuous-time model for IMU
error-state is:

˙̃XIMU = FX̃ +GnIMU (8)

Here we have discrete transition matrix (F) and noise covari-
ance matrix (G) as follows to describe the system dynamics
and noise characteristics:

F =

⌊ω̂X⌋ −I3 03X3 03X3 03X3

03X3 03X3 03X3 03X3 03X3

−C(IGq̂)
T ⌊âX⌋ 03X3 03X3 −C(IGq̂)

T 03X3

03X3 03X3 03X3 03X3 03X3

03X3 03X3 I3 03X3 03X3

03X3 03X3 03X3 03X3 03X3

03X3 03X3 03X3 03X3 03X3

(9)

G =

−I3 03X3 03X3 03X3

03X3 I3 03X3 03X3

03X3 03X3 −C(IGq̂)
T 03X3

03X3 03X3 03X3 I3
03X3 03X3 03X3 03X3

 (10)

The F matrix is approximated using a 3rd order matrix
exponential method, assuming a really small time step (dt).
Code predicts the new system state using ”dict new state”
which does a 4th order Range-Kutta integration method.
Transition matrix (ϕ) is modified by taking into account the
space of states that are not directly observable from the sensor
measurements.

The state covariance matrix (Q), which represents the un-
certainties or errors in the system model, is updated with the
help of ϕ and G. Finally, state covariance matrix is fixed to

be symmetric by averaging it with its transpose. IMU state is
updated and it serves as the null space values for the next state
estimation.

D. Prediction of new state

On every new IMU measurement, the ”predictnewstate”
function uses the 4th order Range-Kutta numerical integration
to update the estimation.

E. State Augmentation

The function ”state augmentation” augments the state
by adding a new camera state to the state vector, updates
the covariance matrix, and ensures the symmetry on addition
of new images. We update the camera position GpC and
orientation CqG with last IMU state and augment the state
covariance matrix P.

The pose of the camera can be calculated as,

GpC = GpI + C(CGq)
T IpC (11)

C
Gq = C

I q ⊗ I
Gq (12)

J = [J1 O6X6N] (13)

J1 =

[
C(ICq) 03X9 03X3 I3 03X3

⌊C(IGq)
T IpC⌋ 03X9 I3 03X3 I3

]
(14)

Pk|k =

[
I21+6N

J

]
Pk|k

[
I21+6N

J

]T
(15)

F. Add Feature Observations

The function ”add feature observations” adds feature
observations from a new image frame to the map server in
VIO. It creates a new map that shows the unobserved features.

G. Updating the Measurements

Here, the ”measurement update” function updates from
visual features. Measurements of stereo and position features
in left and right camera are given as below:

zji =

uj
i,1

vji,1
uj
i,2

vji,2

 =

[
1

Ci,1zj
02X2

02X2
1

Ci,2zj

]
Ci,1Xj
Ci,1Yj
Ci,2Xj
Ci,2Yj

 (16)

and

Ci,1pj =

Ci,1Xj
Ci,1Yj
Ci,1Zj

 = C(
Ci,1

G q)(Gpj − Gpci,1) (17)

Ci,2pj =

Ci,2Xj
Ci,2Yj
Ci,2Zj

 = C(
Ci,2

G q)(Gpj − Gpci,2) (18)

3

QR decomposition is used to decompose the H matrix, when
the rows are more than the columns. This results in a H thin
matrix. Kalman gain, is used to determine the weight of mea-
surement and is computed with the help of the aforementioned
H thin matrix, covariance P, and noise covariance.

K = PTT
H(THPTT

H +Rn) (19)

Taking the inverse of this matrix is computationally unsta-
ble, so we can use the Ax=b trick to solve the problem. We
finally update the covariance matrix P as:

Pk+1|k+1 = (IkXk −KTH)Pk|k (20)

H. Trajectory Error Evaluation

This subsection shows the plots for error between
Ground Truth(pink) and Estimated Trajectory(blue) with the
rpg trajectory evaluation toolbox [3]. The absolute trajec-
tory error (ATE) and the root mean square translation error
(RMSE) is shown in the below table I, II and III for Rotation,
Scale and Translation respectively. Further, the output are
represented in the Fig. 2, 3, 4, 5, 6 and 7.

TABLE I: Absolute Error Rotation

Metric Value

Maximum 179.9886173933859
Mean 170.59123433130742
Median 172.9962809779764
Minimum 143.294222905647
Number of Samples 2921
RMSE 170.7202200317232
Standard Deviation 6.635080783301496

TABLE II: Absolute Error Scale

Metric Value

Maximum 11.298875556865084
Mean 1.8612449174449517
Median 1.4386692855281602
Minimum 0.00048575769031611316
Number of Samples 2921
RMSE 2.480465707298732
Standard Deviation 1.6396577332999516

TABLE III: Absolute Error Translation

Metric Value

Maximum 0.9077707681773487
Mean 0.16196289916673598
Median 0.13821373270450427
Minimum 0.0033654260529236814
Number of Samples 2921
RMSE 0.18829498416429352
Standard Deviation 0.0960365573879929

Fig. 2: Translation Error

Fig. 3: Rotation Error

Fig. 4: Relative Translation Error

Fig. 5: Relative Yaw Error

Fig. 6: Trajectory Side View

4

Fig. 7: Trajectory Top View

REFERENCES

[1] K. Sun, K. Mohta, B. Pfrommer, M. Watterson, S. Liu, Y. Mulgaonkar,
C. J. Taylor, and V. Kumar, “Robust stereo visual inertial odometry for
fast autonomous flight,” 2018.

[2] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman
filter for vision-aided inertial navigation,” in Proceedings 2007 IEEE
International Conference on Robotics and Automation, 2007, pp. 3565–
3572.

[3] J. Delmerico and D. Scaramuzza, “A benchmark comparison of monoc-
ular visual-inertial odometry algorithms for flying robots,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA), 2018, pp.
2502–2509.

	Introduction
	Phase1: Classical Approach
	Initialization of Gravity and Bias
	Batch IMU Processing
	Process Model
	Prediction of new state
	State Augmentation
	Add Feature Observations
	Updating the Measurements
	Trajectory Error Evaluation

	References

