
RBE 549 Computer Vision
Project 4 - Phase 1

Visual and Inertial Odometry
Taruneswar Ramuu

Robotics Engineering Department
Worcester Polytechnic Institute

Worcester, MA, USA
Email: tramuu@wpi.edu

Soumik Saswat Patnaik
Robotics Engineering Department

Worcester Polytechnic Institute
Worcester, MA, USA

Email: sspatnaik@wpi.edu

Abstract—This report describes the implementation of a stereo
visual-inertial odometry algorithm using the Multi-State Con-
straint Kalman Filter (MSCKF). The project builds upon an
existing codebase provided as a starting point. It elaborates on
the mathematical principles that form the basis of the stereo
MSCKF algorithm and explains its integration into the existing
codebase. The report also documents the results and observations
at each stage of the implementation.

Index Terms—Multi-State Constraint Kalman Filter
(MSCKF), Stereo Vision-aided Odometry, Visual Inertial
Odometry, Sensor Fusion.

I. INTRODUCTION

The primary objective of this project is to estimate depth
from images, a challenging task given that depth cannot be
directly derived from a single camera without prior environ-
mental knowledge. While a stereo camera with a known pose
can estimate depth through feature matching, this approach has
limitations including computational expense and susceptibility
to motion blur. To address these challenges, the project inte-
grates an Inertial Measurement Unit (IMU), which measures
linear and angular acceleration. The IMU excels in capturing
fast movements and jerks where cameras struggle, although it
may drift over time, an area where cameras perform better.
Leveraging the complementary nature of these systems, the
project aims to achieve accurate pose estimation and backtrack
depth.

In the context of robotic advancements, particularly in aerial
vehicles, state estimation is paramount for pose acquisition and
stability during flight. Visual Inertial Odometry (VIO) emerges
as a solution, combining visual data from cameras with IMU
measurements. This project implements VIO using the Multi-
State Constraint Kalman Filter (MSCKF) to address the high
costs associated with sensors and processing in traditional VIO
implementations. By employing MSCKF, the project seeks
to determine the state and localization of the robot through
sensor fusion of the IMU and a stereo camera. The approach
involves modifying Python starter code from the authors of the
S-MSCKF paper to implement key functions and testing the

algorithm on the Machine Hall 01 easy subset of the EuRoC
dataset.

II. DATASET
The implementation of this project utilized the Machine Hall

01 easy subset of the EuRoC dataset, collected onboard a Mi-
cro Aerial Vehicle (MAV) in flight. This dataset encompasses
stereo images, synchronized IMU measurements, and precise
ground truth data for motion and structure. The ground truth is
provided by a sub-mm accurate Vicon Motion capture system.
The VI sensor carried by the quadrotor captures the data as
it flies along a designated trajectory, enabling rigorous testing
and validation of the implemented algorithm.

III. FUNCTION IMPLEMENTATIONS
A. Initialize Gravity and Bias

The 6-DOF IMU sensor, providing measurements for ro-
tation (gyroscope) and acceleration (accelerometer), necessi-
tates calibration to mitigate biases. This calibration involves
determining the mean of stationary readings to identify bi-
ases, which are subsequently subtracted from future readings.
Ideally, the gyroscope should read [0, 0, 0] with minor
fluctuations, while the accelerometer should register [0, 0,
-g] in the world frame, albeit with potential noise-induced
fluctuations.

Prior to flight commencement, calibration is executed to
correct biases in both gyroscope and accelerometer outputs.
The ”initialize gravity and bias” function is designed for this
purpose, establishing the IMU’s gravity and bias along with
the robot’s initial orientation based on initial IMU readings.
This function computes the gyro bias and estimates gravity
within the IMU frame by averaging angular velocity and linear
acceleration data from the IMU messages, respectively. The
initial orientation aligns with the inertial frame, ensuring a
robust initiation for the Visual-Inertial Odometry system.

B. Batch IMU Processing
The IMU batch processing function serves as a pivotal

component within the Visual-Inertial Odometry system, re-
sponsible for reading IMU messages up to the point where



the subsequent stereo camera images become available. The
state vector employed for predicting the forthcoming states
encompasses parameters pertinent to both the camera and IMU
systems. These include quaternion representations for rotation,
gyroscope and accelerometer biases, as well as positional and
velocity components.

Fig. 1: State Vector

The ”batch imu processing” function operates within a
predefined time window, facilitating the propagation of the
IMU state by processing the accumulated IMU measurements.
This function sequentially iterates through the IMU message
buffer, filtering out previously processed messages and halting
at the designated time boundary. For each unprocessed IMU
message encountered, the function employs the process model
to update the IMU state using the angular velocity and linear
acceleration data. Subsequently, the timestamp and ID of the
IMU state are updated, and the processed messages are purged
from the buffer.

This meticulous processing mechanism ensures precise state
propagation and synchronization between the IMU and Visual
Odometry subsystems. Such synchronization is imperative for
robust sensor fusion and localization, underscoring the func-
tion’s significance in achieving reliable and accurate system
performance.

C. Process Model

The process model function is instrumental in advancing the
system state and its associated covariance through a 4th order
Runge-Kutta integration technique. Initially, it distills pertinent
details from the existing system state, notably the IMU’s status
encompassing orientation, velocity, position, and biases from
both gyroscope and accelerometer readings. Subsequently, the
function determines the time step by referencing the provided
time and the IMU state’s timestamp.

Fig. 2: Dynamics of IMU

Following this, the function calculates the discrete transition
matrix (F ) and the noise covariance matrix (G) to encapsulate
the system’s dynamics and noise characteristics, respectively.
The transition matrix is derived using a 3rd order matrix
exponential method, under the assumption of a minimal time
step (dt). Intermediate matrices, namely Fdt, Fdt2, and Fdt3,
are computed to facilitate this computation.

Utilizing the 4th order Runge-Kutta method, the function
predicts the forthcoming system state, invoking the “predict
new state” function. This operation primarily refines the

Fig. 3: Discrete Transition and Noise Covariance Matrix

system state based on gyroscope and accelerometer inputs
alongside prevailing state estimates. Concurrently, adjustments
are made to the transition matrix, Φ, to incorporate the null
space – representing states not directly observable through
sensor measurements.

The state covariance matrix, Q, undergoes updates employ-
ing Φ, G, and a continuous noise covariance matrix, capturing
the inherent uncertainties in the system model. This update
extends to the covariance interlinking IMU and potential
camera states. To ensure symmetry, the state covariance matrix
is symmetrically adjusted by averaging it with its transpose.

Conclusively, the IMU state is refreshed with the current
orientation, position, and velocity metrics, laying the ground-
work as null space values for subsequent iterations of the state
estimation process.

D. Predict New State

Upon acquiring the current system state, we employ the
fourth-order Runge-Kutta method to advance the state and
anticipate its subsequent value. This is achieved through a ded-
icated function, termed “predict new state”, which assimilates
the time step (dτ ), gyroscope readings, and acceleration data
corresponding to the present state.

Initially, we compute the normalized error state for the an-
gular velocity data, followed by the derivation of the Ω matrix
through a systematic procedure. Concurrently, the orientation,
velocity, and position data are extracted from the IMU state
server. Utilizing the current state and Ω values, we compute the
angular velocity and acceleration, subsequently approximating
them via the Runge-Kutta methodology.

Fig. 4: Omega Matrix

Upon deriving the estimated orientation, it is transformed
into quaternion form. This quaternion representation is lever-



aged to refine the velocity and position metrics within the
current IMU state. These refined values serve as the updated
state information, thereby informing the subsequent state
determination in the sequential process. The intermediate K
values are calculated as follows:-

Fig. 5: Intermediate Values of K

E. State Augmentation

The ”state augmentation” function orchestrates the inte-
gration of a new camera state into the existing state server.
This involves updating the covariance matrix and ensuring
its symmetry upon the inclusion of new image data. The
function calculates the rotation and translation parameters
between the IMU and the camera, subsequently updating
the camera state. Concurrently, adjustments are made to the
covariance matrix to accommodate this new state. This pivotal
step ensures coherence between the IMU and camera states,
bolstering the integrity of the Inertial Navigation System (INS)
implementation.

Fig. 6: State Augmentation Jacobian

F. Adding Feature Observation

The ”add feature observations” function integrates feature
observations from a new image frame into the map server
within a visual-inertial odometry framework. It initiates new
map features for previously unseen elements, refines observa-
tions for pre-existing features, and computes the tracking rate
to assess system performance.

G. Measurement Update

The function leverages a measurement model to refine state
estimates through the calculation of a residual, r, which lin-
early correlates with state errors. To streamline computations,
we employ QR decomposition to simplify the Jacobian matrix.
Following this simplification, we compute the Kalman gain
and derive the state error.

With this state error in hand, we prioritize the update of the
IMU state, subsequently refining the camera states. Conclud-
ing this process, we update the state covariance, ensuring the
covariance matrix maintains symmetry.

IV. RESULTS
This project utilizes input data from the MH01easy subset

of the EuRoC dataset. The output generated by the project
for this data is depicted in the accompanying figure and is
consistent with the anticipated output.

−2 0 2 4

x [m]

−2

0

2

4

6

8

y
[m

]

Estimate

Groundtruth

((a)) Trajectory Plot (Top View) in SE3

0 20 40 60 80

Distance [m]

−100

0

100

P
os

it
io

n
D

ri
ft

[m
m

]

x

y

z

((b)) Translation error in SE3

Fig. 7: Error Plots from rpg toolbox

REFERENCES

[1] Ke Sun, Kartik Mohta, Bernd Pfrommer, Michael Watterson, Sikang
Liu, Yash Mulgaonkar, Camillo J. Taylor, and Vijay Kumar, “Robust
Stereo Visual Inertial Odometry for Fast Autonomous Flight.”

[2] Anastasios I. Mourikis and Stergios I. Roumeliotis, “A Multi-State
Constraint Kalman Filter for Vision-aided Inertial Navigation.”

[3] “StereoMSCKF: Stereo Multi-State Constraint Kalman Filter,” GitHub
repository. [Online]. Available: https://github.com/uoip/stereomsckf.

[4] “RPG Trajectory Evaluation,” GitHub repository. [Online]. Available:
https://github.com/uzh-rpg/rpgtrajectoryevaluation.



Fig. 8: Trajectory Visualization


