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I. INTRODUCTION

Using a Multi-state Constraint Kalman Filter (MSCKF), a
filter-based stereo Vision-aided odometry is implemented in
Phase 1. The method used in this project combines sensor
data from an IMU and a stereo camera. We have applied eight
MSCKF functions. Our goal is to precisely ascertain the robot’s
location and state using the information gathered from these two
sensors. Additionally, we have assessed the S-MSCKF output
for the EuRoC dataset in relation to ground truth.

II. INTIALIZING GRAVITY AND BIAS

When the robot is positioned statically, the first 200 messages
from the IMU are used to initialize the gyroscope bias and
gravity. The average of these 200 gyroscope readings serves
as the initial value for the gyroscope bias bg. The initial value
of the gravity g is [0, 0, gnorm], where gnorm represents the
average of the first 200 accelerometer readings. The quaternion
from -g to gnorm is used to initialize the orientation.

III. BATCH IMU PROCESSING

Upon receiving a new feature, we want to process all of the
IMU messages that were received before the time stamp of the
new feature. We use the process model to update our state
estimation for each IMU message received before the feature
time stamp and stored in the IMU message buffer.

IV. PROCESS MODEL

Using a fourth order Runge-Kutta integration technique, the
function ”process model” propagates the system state and co-
variance. It begins by gathering pertinent data from the existing
state of the system, including the orientation, velocity, position,
and accelerometer and gyroscope biases from the IMU (Inertial
Measurement Unit) state. The time step is then determined using
the given time and IMU state timestamp.
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ḃa(t) = nwa(t),
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Where I
Gq(t) is the unit quaternion describing the rotation

from global frame G to IMU frame I. ω(t) = [ωx, ωy, ωz]
T is

the rotational velocity in IMU frame, and
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Gyroscope measurement equation:

ωm = ω + bg + ng (4)

Accelerometer measurement equation:

am = I
GR(Ga− Gg + 2⌊ωG×⌋GvI + 2⌊ωG×⌋ 2GpI) + ba + na

(5)

where I
GR is the rotation matrix calculated from quaternion

I
Gq Then apply expectation operator on equation 1 we obtain
the quations for propagating IMU state estimates:
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The code computes discrete transition (F) and noise (G)
matrices, using a 3rd order matrix exponential method with a
small time step. It predicts the system state using 4th order
Runge-Kutta integration. The transition matrix Phi is adjusted
for the null space. State covariance matrix (Q) is updated with
Phi, G, and continuous noise covariance. Covariance between
IMU and camera states is also updated. The IMU state is
updated with current orientation, position, and velocity for the
next iteration.

˙̃XIMU = FX̃ +GnIMU (7)

Where F and G are:

mailto:asrathi@wpi.edu
mailto:ajagetia@wpi.edu


F =



⌊ω×⌋ −I3 03×3 03×3 03×3

03×3 03×1 03×3 03×3 03×3

−C( I
Gq̂)
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V. PREDICT NEW STATE

The ”predict new state” function utilizes an Extended Kalman
Filter (EKF) for prediction. It estimates IMU orientation, veloc-
ity, and position by integrating gyroscope, accelerometer, and
IMU measurements with a fourth-order Runge-Kutta method
and adaptive time step. Intermediate variables (k1, k2, k3, k4)
are computed to update IMU orientation, velocity, and position.

VI. STATE AUGMENTATION

The ”state augmentation” function adds a new camera state to
the server, updates the covariance matrix, and ensures symmetry.
It calculates IMU-to-camera rotation and translation, updates
camera state, and adjusts the covariance matrix accordingly,
crucial for consistency between IMU and camera states in the
INS implementation.

GpC = GpI + C(CGq)
T IpC (10)

C
Gq = C

Iq ⊗ I
Gq (11)

where GpI is the position of the IMU, C
Iq and I

Gq are the
quaternions representing the rotations from the camera to the
IMU and from the IMU to the global frame, respectively, and
Ipc is the position of the camera relative to the IMU.
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where I21+6N is the identity matrix sized to match the
augmented state dimensions, incorporating all previous states
and the newly added camera state.

VII. ADDING FEATURE OBSERVATION

The ”add feature observations” function updates the map
server in visual-inertial odometry by adding new features,

updating existing ones, and calculating the tracking rate.
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where ui,1
j and vi,1j are the coordinates in the left camera, and

ui,2
j and vi,2j in the right camera for the i-th observation of

feature j.

VIII. MEASUREMENT STATE

The measurement update function computes the Kalman gain
K using measurement matrix H and residual matrix r. It then
updates the IMU state, camera state, and state covariance matrix
P. If the number of features exceeds the number of state
components, QR decomposition is used for matrix H to obtain
Q and TH.

The measurement matrix H consists of block rows H(j),
where j = 1, . . . , L corresponds to all detected features. When
the number of measurements exceeds the number of state
components, which is often the case, QR decomposition is
applied to matrix H to manage its dimensionality and improve
numerical stability:

H =
[
Q1 Q2

] [TH

0

]
(16)

The residual rn is calculated by projecting the original
residual r onto the column space of Q1:

rn = QT r = THX̃ + nn

where X̃ denotes the state error and nn represents the noise in
the measurement process.

The covariance matrix Rn of the noise vector nn is derived
from the noise characteristics of the measurements, typically
expressed as:

Rn = σ2
imIq×q

where σ2
im is the variance of the measurement noise and q is the

dimensionality of the subspace spanned by Q1.
The Kalman gain K is typically computed using:

K = PT T
H(THPT T

H +Rn)
−1

Once Kalman Filter (K) is obtained, it is used to compute
the correction for the state:

∆X = Krn

Finally, the state covariance matrix P is updated to reflect the
reduced uncertainty after the measurement update:

Pk+1|k+1 = (I −KH)Pk|k(I −KH)T +KRnK
T

IX. FUTURE RESEARCH

Research problems for classical Visual-Inertial Odometry
(VIO) approaches:
Feature Tracking: Improve robustness in tracking features
across different environments.
Sensor Fusion: Enhance accuracy in integrating camera and



IMU data, including calibration and synchronization.
Dynamic Environment Handling: Develop methods to handle
moving objects in the scene.
Scale Ambiguity and Drift: Mitigate scale ambiguity and drift
accumulation over time.
Real-time Optimization: Optimize computational efficiency
for real-time performance.
Adapting to Conditions: Adapt algorithms to challenging
conditions like low-light or adverse weather.
Long-term Localization: Ensure accurate localization and
mapping over extended periods.
Robustness to Sensor Failures: Enhance reliability in the face
of sensor failures or degradation.

X. RESULTS

We plot the error between Ground Truth and Estimate Tra-
jectory with the rpg trajectory evaluation toolbox. The abso-
lute median trajectory error (ATE) is 0.07072745620375322
m and the root mean square translation error (RMSE) is
0.08225543715390592 m

Fig. 1. Translation Error

Fig. 2. Rotation Error

Fig. 3. Scale Drift

Fig. 4. Trajectory Side View

Fig. 5. Trajectory Top View

Fig. 6. Output Trajectory
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Fig. 7. Relative Yaw Error

Fig. 8. Relative Translation Error
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