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Abstract—This paper subsumes of the end-to-end pipeline
of implementation of classical Visual-Inertial Odometry. The
technique consists of a fusion of Camera and IMU data for
state estimation using a Multi-State Constraint Kalman Filter
(MSCKF).

Index Terms — Visual Intertial Odometry

I. INITIALIZE IMU GRAVITY AND BIAS

For every sensor, there is some bias value which refers
to a systematic error or offset in the measurements provided
by a sensor. Gravity and Gyroscope bias are initialized. We
are using the reading from the first 200 messages of IMU
to calculate bias and gravity values. The initial value of the
gravity vector g is set to [0, 0, gnorm], where gnorm represents
the magnitude of the first 200 accelerometer readings.

II. BATCH IMU PROCESSING

IMU data received is stored into a buffer, as we want to use
it in a First-Come-First-Served basis. We utilize the process
model to update our state estimation based on each IMU
message within the IMU message buffer received before the
feature timestamp.

III. PROCESS MODEL

System Dynamics of IMU are given by the following
equations. These derivatives are integrated by using the 4th-
order Range-Kutta equation to find the values of these state
variables.

I
Gq̇ =

1

2
Ω(ω(t)) I

Gq(t),

ḃg(t) = nwg(t),
Gv̇I(t) =

Ga(t),

ḃa(t) = nwa(t),
G(ṗ)I(t) =

GvI(t),

(1)

where ω̂ ∈ R3 and â ∈ R3 are the IMU measurements
for angular velocity and acceleration respectively with biases
removed.

Where I
Gq(t) is the unit quaternion describing the rotation

from global frame G to IMU frame I. ω(t) = [ωx, ωy, ωz]
T is

the rotational velocity in IMU frame, and

⌊ω×⌋ =
[
−[ω×] ω
ωT 0

]
(2)

⌊ω×⌋ =

 0 −ωz ωy

ωz 0 −ωx

−ωy −ωx 0

 (3)

Gyroscope measurement is given by the following equation

ωm = ω + bg + ng (4)

Accelerometer measurement is given by the following equa-
tion

am = I
GR(Ga− Gg + 2⌊ωG×⌋GvI + 2⌊ωG×⌋ 2GpI) + ba + na

(5)
where I

GR is the rotation matrix calculated from quaternion
I
Gq. By applying the expectation operator on equation 1, the
following equations are obtained for propagating IMU state
estimates:

I
G
˙̂q =

1

2
Ω(ω̂I

G)q̂,

˙̂
bg = 03×1,

G ˙̂vI = CT
q̂ â− 2⌊ωG×⌋Gv̂I + ⌊ωG×⌋ 2Gp̂I +

Gg,

˙̂
ba = 03×1,

G ˙̂pI = Gv̂I

(6)

The continuous time model of an IMU is governed by the
following equation.

˙̃XIMU = FX̃ +GnIMU (7)

Where F and G are:

F =



⌊ω×⌋ −I3 03×3 03×3 03×3

03×3 03×1 03×3 03×3 03×3

−C( I
Gq̂)

T ⌊â×⌋ 03×3 03×3 −C( I
Gq̂)

T 03×1

03×3 03×3 I3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3


(8)



G =


−I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 −C( I
Gq̂)

T 03×3

03×3 03×3 03×3 I3
03×3 03×3 03×3 03×3

 (9)

IV. PREDICT NEW STATE

State prediction in the Visual-Inertial Odometry system is
performed using the Extended Kalman Filter (EKF). Given
the non-linear nature of the state transition model, the EKF
provides a recursive means to predict the state by linearizing
the non-linear functions around the current estimate:

x̂k+1|k = f(x̂k|k, uk) (10)

where f represents the state transition function, x̂k|k the
previous state estimate, and uk the control input from the
IMU. The process noise covariance matrix Q is also updated
to account for the uncertainty in prediction.

V. STATE AUGMENTATION

In the state augmentation function, the camera position Gpc
and orientation C

Gq are updated using the last IMU state. The
state covariance matrix P is also augmented to include these
new states.

A. Camera Pose Computation

The pose of the camera is computed based on the latest
IMU state using the following equations:

Gpc =
GpI + C(CGq)

T Ipc (11)

C
Gq = C

Iq⊗ I
Gq (12)

where GpI is the position of the IMU, C
Iq and I

Gq are the
quaternions representing the rotations from the camera to the
IMU and from the IMU to the global frame, respectively, and
Ipc is the position of the camera relative to the IMU.

B. Jacobian Matrix Computation

The Jacobian J of the transformation is computed to fa-
cilitate the update of the covariance matrix P . The Jacobian
matrix is given by:

J = [J1 06×6N ] (13)

J1 =

[
C(ICq) 03×9 03×3 I3 03×3[

C(IGq)
T IpC×

]
03×9 I3 03×3 I3

]
(14)

where 03×9 and 03×3 are zero matrices of appropriate sizes,
I3 is the 3×3 identity matrix, and × denotes the cross product
matrix of IpC .

C. Covariance Matrix Augmentation

Using the Jacobian matrix J , the state covariance matrix P
is augmented to reflect the increased uncertainty due to the
addition of the camera state:

Pk|k =

[
I21+6N

J

]
Pk|k

[
I21+6N

J

]T
(15)

where I21+6N is the identity matrix sized to match the
augmented state dimensions, incorporating all previous states
and the newly added camera state.

This structured approach ensures that the visual information,
represented by the camera pose, is correctly integrated into the
overall state estimate of the system. This integration helps in
maintaining an accurate and robust estimation of the system
state in a dynamic environment.

VI. ADD FEATURE OBSERVATION

Newly detected features are added to the feature map with
their observed measurements and associated uncertainties. For
each feature observed in the image frame at time t, the
feature’s location in pixel coordinates is added to the state
vector along with a unique identifier. The state update is given
by:

Zi
j =


ui,1
j

vi,1j

ui,2
j

vi,2j

 (16)

where ui,1
j and vi,1j are the coordinates in the left camera, and

ui,2
j and vi,2j in the right camera for the i-th observation of

feature j.

VII. MEASUREMENT UPDATE

The measurement update function processes the measure-
ment matrix H and the residual vector r to compute the
Kalman gain K, and subsequently updates the IMU state
XIMU, camera state, and the state covariance matrix P .

Constructing the Measurement Matrix H: The mea-
surement matrix H consists of block rows H(j), where
j = 1, . . . , L corresponds to all detected features. When
the number of measurements exceeds the number of state
components, which is often the case, QR decomposition is
applied to matrix H to manage its dimensionality and improve
numerical stability:

H =
[
Q1 Q2

] [R
0

]
Here, Q1 and Q2 are orthogonal matrices from the QR de-
composition, and R is an upper triangular matrix representing
the reduced form of H .

Computing the Residual rn: The residual rn is calculated
by projecting the original residual r onto the column space of
Q1, effectively reducing the influence of measurement noise:

rn = QT
1 r = RX̃ + nn



where X̃ denotes the state error and nn represents the noise
in the measurement process.

Covariance Matrix of the Noise Vector nn: The covari-
ance matrix Rn of the noise vector nn is derived from the
noise characteristics of the measurements, typically expressed
as:

Rn = σ2
imIq × q

where σ2
im is the variance of the measurement noise and q is

the dimensionality of the subspace spanned by Q1.
Kalman Gain K: The Kalman gain K is typically com-

puted using:

K = PHT (RRT +Rn)
−1

To circumvent numerical instabilities inherent in inverting
large matrices directly, the computation is reformulated as
solving the linear system Ax = b where:

A = RPRT +Rn and b = RPT

Here, A is symmetric, ensuring a more stable solution when
computing K as:

KT = A−1b

State Correction ∆X: Once K is obtained, it is used to
compute the correction for the state:

∆X = Krn

Updating the Covariance Matrix P : Finally, the state co-
variance matrix P is updated to reflect the reduced uncertainty
after the measurement update:

Pk+1|k+1 = (I −KH)Pk|k(I −KH)T +KRnK
T

This rigorous approach to the measurement update ensures
that visual information is optimally integrated into the state
estimate, improving the precision and reliability of the visual-
inertial odometry system.

VIII. TRAJECTORY ERROR EVALUATION

We plotted the error between Ground Truth and Estimate
Trajectory with the rpg trajectory evaluation toolbox. The ab-
solute median trajectory error (ATE) is 0.08970106068178003
m and the root mean square translation error (RMSE) is
0.11358074282391588 m.
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Fig. 1. Translation Error
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Fig. 2. Rotation Error
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Fig. 3. Relative Translation Error (Absolute)
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Fig. 4. Relative Translation Error (Percentage)
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Fig. 5. Relative Yaw Error
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Fig. 6. Scale Error
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Fig. 7. Trajectory(Top View)
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Fig. 8. Trajectory(Side View)

VISUAL-INERTIAL ODOMETRY RESEARCH PROBLEMS

Advanced Feature Detection and Matching: Researching
algorithms that remain robust under varying lighting condi-
tions and dynamic environments, focusing on feature detection
and matching to improve the accuracy and reliability of VIO
systems.

Outlier Rejection Techniques: Developing sophisticated
techniques for outlier rejection to handle erroneous feature
associations, which are critical for maintaining the integrity
of VIO in complex scenes.

Alternative Filtering Techniques: Exploring filtering tech-
niques beyond the Extended Kalman Filter (EKF), such as the
Unscented Kalman Filter (UKF) and Multi-State Constraint
Kalman Filters (MSCKF), to enhance the state estimation
process in VIO systems.

Trajectory Planning for Uncertainty Management: In-
vestigate methods for planning trajectories that actively miti-
gate the growth of uncertainty in VIO estimation. This could
involve developing algorithms that intelligently steer the robot
to minimize changes in uncertain directions or adjust its mo-
tion to maintain better observability of critical state variables.

Adaptive Sensor Fusion Strategies: Explore adaptive sen-
sor fusion strategies that dynamically adjust the weighting of
visual and inertial measurements based on the estimated un-
certainty. By incorporating feedback from the VIO estimator’s
uncertainty, the fusion process can be optimized to maintain
stability and accuracy over longer periods of operation.

Long-Term Estimation Stability: Develop techniques to
improve the long-term stability of VIO estimation by ad-
dressing the inherent limitations in observability. This could
involve incorporating additional sensor modalities, leveraging
external information sources (such as GPS or landmarks), or
implementing advanced filtering and smoothing techniques to
mitigate the effects of accumulated uncertainty over time.
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