
Deep and Un-Deep Visual-Inertial Odometry
Computer Vision (RBE549) Project 4

Hrishikesh Pawar
MS Robotics Engineering

Worcester Polytechnic Institute
Email: hpawar@wpi.edu

Tejas Rane
MS Robotics Engineering

Worcester Polytechnic Institute
Email: turane@wpi.edu

Abstract—In this project, we implemented seven key functions
of Stereo Multi-State Constraint Kalman Filter (MSCKF) (1),
building upon the seminal work presented in the seminal MSCKF
(2) research.

I. PHASE 1 - CLASSICAL VIO

A. Introduction
In the realm of micro aerial vehicles (MAVs), accurate

and robust state estimation is paramount for stable flight and
effective operation in GPS-denied environments. The paper
introduces a tightly-coupled sensor fusion approach for Visual
Inertial Odometry (VIO) that synergizes visual data from
cameras with inertial measurements from an IMU.

Following the convention in (2), IMU state is defined as

xI =
(
I
Gq

T ,bT
g ,

GvT
I ,b

T
a ,

GpT
I ,

I
Cq

T , IpT
C

)T
(1)

Here, I
Gq is the quaternion denoting rotation from the inertial

frame to the body frame, GvI and GpI are the velocity and
position of the body in the inertial frame, and bg and ba

are the biases of the measured angular velocity and linear
acceleration from the IMU. The quaternion I

Cq and vector
IpC represent the transformation between the camera frame
and the body frame.

B. Initialization of Gravity and Gyroscope Bias
The initial alignment and calibration of the IMU are accom-

plished through the initialize_gravity_and_bias
function. This process leverages the first 200 IMU messages to
estimate the gyroscope bias and the gravity vector in the IMU
frame. The gyroscope bias, bg , is determined as the average
of the angular velocities from these initial samples:

bg =
1

N

N∑
i=1

ωi (2)

where N = 200 and ωi is the angular velocity vector from
the i-th IMU message.

Simultaneously, the gravity vector, g, is initialized by
averaging the linear acceleration readings, and adjusting its
orientation to align with the world frame, thus:

g = [0, 0,−∥gavg∥]T (3)

where gavg is the averaged acceleration vector from the initial
samples. This averaged vector’s magnitude provides the norm
of the gravity vector experienced by the IMU.

Lastly, the initial orientation of the IMU with respect to
the world frame is computed to align the estimated gravity
direction in the IMU frame with the actual direction of gravity.
This orientation is represented by a quaternion.

C. Batch IMU Processing for State Update
The batch_imu_processing function sequentially

process messages from the IMU message buffer within a
specified time bound. The core operation of this function is
to iteratively apply the process model to each IMU message,
thereby updating the state information of the IMU based on
the readings of angular velocities and linear accelerations. The
procedure emcompasses the following key operation:

• Time Filtering: Messages are selectively processed based
on their timestamps to maintain the temporal integrity of
the data streams, ensuring that only messages preceding
the time bound contribute to state updates.

• State Propagation: Utilizing the angular velocity ω and
linear acceleration a from each IMU message, the sys-
tem’s state is advanced through the process_model
function:

Statenew = process model(Statecurrent, ω,a,∆t) (4)

where ∆t denotes the time increment since the last state
update.

• Synchronization and Buffer Management: Follow-
ing each message’s processing, the IMU state’s times-
tamp is synchronized to the most recent message time.
Subsequently, processed messages are purged from the
imu_msg_buffer, streamlining the buffer for future
operations.

D. Process Model
The estimated IMU state is modeled with continuous dy-

namics as:
I
G
˙̂q =

1

2
Ω(ω̂)IGq̂,

˙̂
bg = 03×1,

G ˙̂v = C
(
I
Gq̂

)⊤
â+ Gg,

˙̂
ba = 03×1,

G ˙̂pI = Gv̂,
I
C
˙̂q = 03×1,

I ˙̂pC = 03×1

(5)

where ω̂ and â are the IMU measurements for angular
velocity and linear acceleration respectively.

ω̂ = ωm − b̂g, â = am − b̂a (6)

Ω (ω̂) =

(
−[ω̂×] ω
−ω⊤ 0

)
(7)

The continuous dynamics of the IMU state are linearized
as:

˙̃xI = Fx̃I +GnI (8)

where n⊤
I =

(
n⊤
g n⊤

wg n⊤
a n⊤

wa

)⊤
. The vectors ng and na

represent the Gaussian noise of the gyroscope and accelerom-
eter measurement, while nwg and nwa are the random walk
rate of the gyroscope and accelerometer measurement biases.

Here the discrete transition matrix F and noise covariance
matrix G are given by:

F =



−⌊ω̂×⌋ −I3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

−C
(
I
Gq̂

)⊤ ⌊â×⌋ 03×3 03×3 −C
(
I
Gq̂

)⊤
03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 I3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3


(9)

G =



−I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 −C
(
I
Gq̂

)⊤
03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 I3
03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3


(10)

The discrete time state transition matrix is given as:

Φk = Φ(tk+1, tk) = exp

(∫ tk+1

tk

F(τ)dτ

)
(11)

Here, the matrix exponential is approximated by the first
three terms of the Power Series expansion as:

exp

(∫ tk+1

tk

F(τ)dτ

)
=

I + F(τ)dτ +
1

2
(F(τ)dτ)2 +

1

6
(F(τ)dτ)3

(12)

The discrete time noise covariance matrix is given as:

Qk =

∫ tk+1

tk

Φ(tk+1, τ)GQGΦ(tk+1, τ)
⊤dτ (13)

Here, Q is the continuous time noise covariance matrix. The
propagated covariance of the IMU state is,

PIIk+1|k = ΦkPIIk|kΦ
⊤
k +Qk (14)

By partioning the covariance of the whole state as,

Pk|k =

(
PIIk|k PICk|k

P⊤
ICk|k

PCCk|k

)
(15)

the full uncertainty propagation can be represented as,

Pk+1|k =

(
PIIk+1|k ΦkPICk|k

P⊤
ICk|k

Φ⊤
k PCCk|k

)
(16)

All these computations happen in the process_model
function.

E. Predict New State

Since we approximate the matrices are approximated
in discrete time, we propagate the state using 4th or-
der Runge Kutta method for numerical integration in the
predict_new_states function.

Applying the 4th order Runge Kutta method, we get the
coefficients:

k1 = f(tn, yn)

k2 = f(tn +
∆t

2
, yn + k1

∆t

2
)

k3 = f(tn +
∆t

2
, yn + k2

∆t

2
)

k4 = f(tn +∆t, yn + k2∆t)

(17)

The state is then propogated using the equation:

I +
∆t

6
(k1 + 2k2 + 2k3 + k4) (18)

F. State Augmentation

In the state_augmentation function, we update the
camera state when the new images are received. The pose of
the new camera state can be computed from the latest IMU
state as:

C
Gq̂ = C

I q̂⊗ I
Gq̂,

Gp̂C = Gp̂C + C
(
I
Gq̂

)⊤ I p̂C (19)

The state covariance matrix is also augmented as:

Pk|k =

(
I21+6N

J

)
Pk|k

(
I21+6N

J

)⊤

(20)

Here, the Jacobian matrix J is given as:

J =
(
JI 06×6N

)
(21)

JI =

(
C
(
I
Gq̂

)
03×9 03×3 I3 03×3

−C
(
I
Gq̂

)⊤ ⌊I p̂C×⌋ 03×9 I3 03×3 I3

)
(22)

G. Adding Feature Observation

The add_feature_observation function adds the
detected features from the latest frame to the feature map.
The function first detects whether the feature already exists in
the feature map based on the feature ID. If the feature already
exists, then the observations are updated in the feature map.
Else, the feature map is updated with the unseen features. The
feature collected at state ID i and feature ID j is represented
as shown in Eq. 23

Zj
i = [uj

i,1, v
j
i,1, u

j
i,2, v

j
i,2] (23)

Here, 1 represents the left camera, and 2 represents the right
camera.

H. Measurement Update
In the measurement_update function, the Kalman Gain

K is calculated from the Jacobian matrix H and the residual
matrix ro. To reduce computational complexity, we use QR
Decomposition to H , to get:

H =
[
Q1Q2

] [TH

0

]
(24)

We then compute the residual matrix rn from the matrix Q1

as:
rn = QT

1 ro = THX̃ + noise (25)

The Kalman Gain is now calculated as:

K = PTT
H(THPTT

H +Rn)
−1 (26)

Here, P is the state covariance matrix and Rn is the noise
covariance matrix. The Kalman Gain is used to find the
correction in the state as:

∆X = Krn (27)

The state covariance matrix P is also updated as:

Pk+1|k+1 = (I −KTH)Pk+1|k (28)

I. Results
The final results of our implementation are shown in

this section. We use the rpg_trajectory_evaluation1

toolbox to generate the following plots and results. The final
3D trajectory as plotted in pangolin is shown in Fig. 1.
The Top view and the side view of the trajectory is plotted in
matplotlib, and shown in Fig. 2 and Fig. 3. Fig. 4 and Fig.
5 show the rotation and translation error of the trajectory as
compared to the ground truth trajectory. Finally, Fig. 6 shows
the Relative Translation Error and Fig. 7 shows the Relative
Yaw Error.

The absolute median trajectory error (ATE) is
0.08387606868046654m and the root mean square
translation error (RMSE) is 0.10087849118423484m.

J. Discussion and Conclusion
In this project, we implemented the classical version of

Visual Inertial Odometry. We integrated and implemented
the stereo Multi-State Constrained Kalman Filter to ensure
accurate and computationally efficient pose estimation. This
implementation effectively addresses challenges related to
data fusion and system scalability, showcasing the successful
utilization of advanced mathematical models and algorithms
in real-time navigation scenarios. In addition to reducing
computational demands, this research lays a solid foundation
for future advancements in optical-inertial odometry systems.

This work can extend into multiple research directions. One
challenge that can be addressed is enhancing the robustness
and real-time performance of the filtering process. This may
involve optimizing algorithms and implementations for ef-
ficiency, reducing computational complexity, and leveraging

1RPG Trajectory Evaluation Toolbox

Fig. 1: Visualization of Final 3D trajectory on pangolin.

−2 0 2 4

x [m]

−2

0

2

4

6

8

y
[m

]

Estimate

Groundtruth

Fig. 2: Visualization of Final trajectory (top view), compared
with the ground truth trajectory, on matplotlib.

−2 0 2 4

x [m]

−1

0

1

z
[m

]

Estimate

Groundtruth

Fig. 3: Visualization of Final trajectory (side view), compared
with the ground truth trajectory, on matplotlib.

https://github.com/uzh-rpg/rpg_trajectory_evaluation

0 10 20 30 40 50 60 70

Distance [m]

−100

0

100

O
ri

en
t.

er
r.

[d
eg

]

yaw

pitch

roll

Fig. 4: Rotation Error

0 10 20 30 40 50 60 70

Distance [m]

−100

0

100

200

P
os

it
io

n
D

ri
ft

[m
m

]

x

y

z

Fig. 5: Translation Error

hardware accelerators such as GPUs or specialized processing
units. A faster visual-inertial odometry pipeline can facilitate
robust localization for high-speed robots and micro aerial
vehicles (MAVs). Another potential research direction involves
extending VIO capabilities to support long-term localization
and mapping. This includes tackling issues such as map
management and scalability, loop closure detection, and main-
taining consistency over prolonged periods or in large-scale
environments.

K. Discrepancies

While implementing the above described functions, we
found a difference in the way the augmentation of state

8.06 16.12 24.18 32.25 40.31

Distance traveled [m]

0

5

10

15

20

25

T
ra

n
sl

at
io

n
er

ro
r

[m
] Estimate

Fig. 6: Relative Translation Error

8.06 16.12 24.18 32.25 40.31

Distance traveled [m]

0

20

40

60

80

100

Y
aw

er
ro

r
[d

eg
]

Estimate

Fig. 7: Relative Yaw Error

covariance matrix (Eq. 26) is defined in (2) and in (3). (2)
defines the equation as:

Pk+1|k+1 = (I−KTH)Pk+1|k(I−KTH)T +KRnK
T (29)

But, the implementation of (3) only writes the first part of the
equation, that is:

Pk+1|k+1 = (I −KTH)Pk+1|k (30)

Another discrepancy is in the definition of the Jacobian
matrix J . (1) defines the matrix as:

J =
(
JI 06×6N

)
(31)

JI =

(
C
(
I
Gq̂

)
03×9 03×3 I3 03×3

−C
(
I
Gq̂

)⊤ ⌊I p̂C×⌋ 03×9 I3 03×3 I3

)
(32)

But the implementation of (3) augments this matrix as:

J =
(
JI 06×6N

)
(33)

JI =

(
C
(
I
Gq̂

)
03×9 03×3 I3 03×3

⌊C
(
I
Gq̂

)⊤ I p̂C×⌋ 03×9 I3 03×3 C
(
I
Gq̂

)⊤)
(34)

We use the matrix as defined in the paper in out implemen-
tation.

REFERENCES

[1] K. Sun, K. Mohta, B. Pfrommer, M. Watterson, S. Liu,
Y. Mulgaonkar, C. J. Taylor, and V. Kumar, “Robust stereo
visual inertial odometry for fast autonomous flight,” 2018.

[2] A. I. Mourikis and S. I. Roumeliotis, “A multi-state con-
straint kalman filter for vision-aided inertial navigation,”
in Proceedings 2007 IEEE International Conference on
Robotics and Automation, 2007, pp. 3565–3572.

[3] K. Robotics, “MSCKF VIO: Multi-State Constraint
Kalman Filter for Visual-Inertial Odometry.”

	Phase 1 - Classical VIO
	Introduction
	Initialization of Gravity and Gyroscope Bias
	Batch IMU Processing for State Update
	Process Model
	Predict New State
	State Augmentation
	Adding Feature Observation
	Measurement Update
	Results
	Discussion and Conclusion
	Discrepancies

