
Project 4
Phase 1 - Classical Visual-Inertial Odometry

Manoj Velmurugan∗, Rishabh Singh†
Robotics Engineering

Worcester Polytechnic Institute
Email: ∗v.manoj1996@gmail.com, †rsingh8@wpi.edu

Abstract—The Multi-State Constraint Kalman Filter (MSCKF)
is a visual-inertial odometry algorithm that utilizes an Extended
Kalman Filter (EKF). This project presents a Python version of
S-MSCKF (Stereo-MSCKF). MSCKF overcomes the complexity
of traditional algorithms by not holding the feature positions of
all detected features as a state in Kalman filter formulation.

I. INTRODUCION

Figure 1 gives the overview of the implemented functions.
We have developed the seven core functions of the stereo
Multi-State Constraint Kalman Filter (MSCKF). This imple-
mentation is a direct conversion of the original C++, which is
referenced here.

Fig. 1: Overview of the implemented functions

II. INITIALIZE GRAVITY AND BIAS

To initialize the filter. gravity and gyroscope biases are set
using the IMU messages we have in the buffer which we
assumed to be captured while the robot remains static. The
gyroscope bias (bg) is determined by calculating the average
of these gyroscope readings. Gravity (g) is initialized to the
vector [0, 0, gnorm], where gnorm represents the magnitude of
the gravity vector derived from the norm of the accelerometer
readings in the buffer. The initial orientation of the robot is
established using a quaternion that aligns the negative gravity
vector (-g) with gnorm.

III. BATCH IMU PROCESSING

We process the IMU messages kept in the buffer at a
certain frequency. We check if the timestamp of the message
is too old, and reject it. Using the new data, we update state
estimation using the process model.

IV. PROCESS MODEL

We model the IMU with the following equations:

I
G
˙̂
Q(t) =

1

2
Ω(ω(t))IGQ̂(t),

I
GV (t) =I

G Ca(t),
I
GṖ (t) =I

G V (t),

Here I
Gq(t) is a unit quaternion describing the rotation from

global frame {G} to IMU frame {I}. ω(t) = [ωx, ωy, ωz]
T is

the rotational velocity in the IMU frame. Also we have,

Ω(ω) =

[
−ω̂ ω
−ωT 0

]
(1)

⌊ω̂⌋ =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (2)

The final model for IMU error-state following the EKF
formulation is:

˙̃xIMU = F x̃+GIMU (3)

Where F and G are

F =


−ω̂x −I3 03×3 03×3

03×3 03×3 03×3 −C(q̃)T

−C(q̃)TAx 03×3 03×3 03×3

03×3 03×3 I3 03×3

03×3 03×3 03×3 03×3

 (4)

G =


−I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 −C(q̃)T 03×3

03×3 03×3 03×3 I3

 (5)

V. PREDICT NEW STATE

The state is propagated by applying a fourth-order Runge-
Kutta method, which provides a numerical solution for the
differential equations governing the system’s dynamics.



VI. STATE AUGMENTATION

In the state augmentation function we incorporate the new
camera into the existing state. This is done through the
following equations:

Jr =

[
−C(qIG)T 03x9 I3 03x3

−C(qIG)TTpcx 03x9 I3 03x3

]
(6)

The covariance matrix is propagated:

Pk+1|k =

[
PII,k+1|k ΦkPIC,k

P T
IC,kΦ

T
k PCC,k|k

]
(7)

Pk|k = J

[
Pk+1|k
P T

k+1|k

]
JT (8)

VII. ADDING FEATURE OBSERVATIONS

This method integrates the newly detected features from
the latest frame into the existing feature map. Each feature is
cataloged within the feature map alongside its unique feature
ID and the ID of the current state.

VIII. MEASUREMENT UPDATE

This method defines the heart of our estimation pipeline. It
performs the following tasks,

• Reduce the residual state space by projecting the resid-
uals to a lower dimensional space. This is performed
by computing the QR decomposition of the residual.
Premultiplying the residual with the transpose of Q matrix
would make the problem computationally more efficient.

• Compute the Kalman gain.
• Perform Kalman filter update step using the reduced form

of residuals.
• Add the residuals to the integrated IMU states. This will

correct the integration errors. Update the state covariance
matrix while ensuring that it is remaining symmetric.

The Kalman gain is obtained using Eqn. 9 and the state
errors are computed using Eqn. 10.

K = PTT
H(THPTT

H +Rn)
−1 (9)

∆X = Krn (10)

IX. RESULTS

The MS-EKF algorithm worked as expected and the trajec-
tory of UAV was visualized live using Pangolin Fig. 2.

RPG Trajectory evaluation toolbox was used to analyze our
outputs against ground truth.

The MSE errors are as follows,
• Rot RMSE - 1.8977
• Scale RMSE - 1.714
• Translation RMSE - 0.1122
The translation error over time is given in Fig. 3
The top view of the trajectory was compared against the

ground truth. It shows good agreement as shown in Fig. 4

Fig. 2: Trajectory of the Estimated UAV Pose visualized in
Pangolin

Fig. 3: Translation Error over time

X. CONCLUSION

In conclusion, this project has introduced a Python imple-
mentation of the Stereo-MSCKF (S-MSCKF), a variant of the
Multi-State Constraint Kalman Filter (MSCKF) visual-inertial
odometry algorithm. By leveraging an Extended Kalman Filter
(EKF), the MSCKF approach offers a streamlined solution that
avoids the computational burden associated with traditional
algorithms. Notably, the MSCKF framework does not treat
all detected feature positions as individual states within the
Kalman filter formulation, thereby simplifying the compu-
tational complexity while maintaining robust visual-inertial
odometry performance.



Fig. 4: Ground Truth Vs Position Estimate


