
RBE 549 Project 3
Einstein Vision

Used two late days for Project 3

Niranjan Kumar Ilampooranan
MS Robotics Graduate Student
Worcester Polytechnic Institute

Thanikai Adhithiyan Shanmugam
MS Robotics Graduate Student
Worcester Polytechnic Institute

I. INTRODUCTION

User interface is a key component in systems that heavily
rely on interaction between the user and the robot. Better
UI directly translates to seamless interactions and so, it is
crucial for the interface to be intuitive for ease of use and
understanding. In the case of self-driving cars, an UI that can
provide valuable insights on the scene without clutter can go
a long way.

For this project, an attempt is made to recreate the informa-
tion capture (dashcam footage) of various objects typically
seen on the road and provide a neat visualization of said
objects. This would include lane markings, pedestrians, and
vehicles in the proximity. In further sections, key concepts that
were implemented for this project is elucidated which include
the following -

• Estimating the location of objects
• Detecting lane markings
• Estimating Pose of pedestrians
• Rendering the entire scene captured on the camera
Results, notable observations, and encountered pitfalls are

discussed in the relevant sections.

II. OBJECT DETECTION AND POSE ESTIMATION

Object detection refers to the capability of computer and
software systems to locate objects in an image/scene and iden-
tify each object. We utilised several models and datasets which
helped us detect a variety of objects in outdoor environments.
[1]

We started Phase 1 by inferring the widely used YOLO
Model version 9 by ultralytics with the pretrained weights
from the MSCOCO Dataset. The YOLO model uses the
Darknet Architecture and generates the bounding boxes of
the detected objects. YOLO inference high mAP for cars,
motorcycles, trucks, stop signs and pedestrians. However, the
other objects mentioned were performing poorly or were not
detected by YOLO. To improve the efficiency in object detec-
tion, we tested our data on the Detic Dataset. The Detic Dataset
was a object-detection model by Facebook Research and can
detect 30,000 classes. The retained weights we tested on was
trained on the MSCOCO, Object36 and OpenImages datasets.
The model was able to detect traffic cones, speed limits, trash

Fig. 1. Classification result of cars - SUV using Detic

bins. Detic (A Detector with image classes) was also able
to distinguish sedans, SUVs ,Trucks and minivans. However,
in terms of efficiency, we noticed that YOLO performed
detection better in vehicles and pedestrians compared to Detic
(classification result shown in figure below). Therefore, We
tested YOLO to generate vehicles and resonated with Detic
to generate the other objects and distinguished the type of
vehicle by masking the bounding box detected by YOLO over
the Detic[2] data.

Once the object is detected, the next milestone lied in
extracting the pose of the object from the image to project it in
the 3D image. To achieve this, we deducted some assumptions
based on observations that there is no roll, pitch, yaw for other
objects apart from vehicle and pedestrian. and no roll, pitch
for vehicle(4DOF).

Based on these assumptions, we utilised the YOLO3D[3]
model for this purpose. YOLO3D uses 2 different models
to generate the 3D pose of vehicles. YOLO3D starts with
detecting the 2D bounding box of vehicles using YOLOv9.
Then, the model uses a regressor network which predicts
the 3D bounding box by regressing the 3D properties and
comparing with constraining the properties with the 2D box.
Using the pose of the 3D pose, we extract the yaw of each
vehicle/bounding box.

The YOLO3D model has problems with efficiencies as the
3D bounding box detected is too low. We tried various 6D
pose detection models but YOLO3D was by far the best.
The pretrained weights were trained on KITTI dataset for 25
iterations which was pretty low for a huge dataset.



Fig. 2. YOLO Detection

Fig. 3. Detic Detection

III. DEPTH ESTIMATION

The crucial information missing in an image which reduces
the knowledge on world environment from image is depth.
Depth can be calculated in terms of relative and metric scale.
We focused in this phase towards models which estimates
metric/absolute depth. We started with the widely used MIDAS
dataset in Phase 1 which provide the relative depth of the
image. However, MIDAS was efficient for smaller distance but
in outdoor dataset like ours, it was not able to predict depth of
any object in the image. Considering very poor performance
of MIDAS[4], we switched to Zoedepth.

Unlike Midas, it gives us metric depth and had better
accuracy than MIDAS. For our, we were able to partially detect
the data of the predicted objects in the dataset but the whole
object resolution was poor. Also, Zoedepth[5] has the problem
of scale ambiguity as the model is unable to predict the scaling
factor if the object are far away and assumes that the whole
image is further than the estimated depth. Also, since Zoedepth
is also trained on indoor environments, it produces undesirable
outputs at various frames. In our project, we saw that the car
was teleport to further and nearer distances simultaneously
with the dataset.

Therefore, the final alternative we selected was the
Marigold[6] model. The Marigold is a diffuser model which

is trained on a large number of images. Marigold is derived
from Stable Diffusion and fine-tuned with synthetic data,
can zero-shot transfer to unseen data, offering state-of-the-art
monocular depth estimation results. Marigold also provides
with absolute depth. The marigold outputs we generated were
far refined and accurate than zoedepth. Previously, Lane data
with zoe depth resulted in curved lane even if the predicted
bounding box was straight. We used depth from Marigold to
compare with pixel coordinates of the centroid of the bounding
box to project it in the blender environment.

IV. LANE DETECTION

Lane detection and segmentation have a lot of use cases,
especially in self-driving vehicles. With lane detection and
segmentation, the vehicle gets to see different types of lanes.
Solving lane detection often proves challenging even with
large datasets. For solving this, we utilise the Mask R-CNN
model [7] to generate bounding boxes for the detected lanes.

The model detects the entire solid lane and dividers as a
single 2D bounding box while for dotted lines, it detects as
independent smaller bounding boxes and merges them together
into a single array. The pipeline then uses Bezier curve to
fit the line as we know the starting and end points of the
line(corners of bounding box). The Mask RCNN identifies
solid lines and dotted lines with ease but faces difficulty in
identifying double lines and dividers. Also, the model is not
able to distinguish the color of the lines. The Bezier curve
fit is not accurate in terms of fitting. We planned to explore
spline interpolation to fit the curve but due to time constraint
we settled for Bezier curve.

Fig. 4. Lane Detection using Mask R-CNN



Fig. 5. Arrow Detection using Mask R-CNN

Fig. 6. Arrow marking plotted in Blender

V. TRAFFIC LIGHT

Detecting Traffic Light proved to challenging than we
anticipated. We began by inferring the YOLOv8 model with
the a custom dataset.[7] The model works reasonably well
when the traffic lights are placed at a close distance but was
not able to detect from further distances. Therefore, we had
to create a mask and use classical approach to identify light.
We traffic light is detected by converting the image to HSV
and then creating a mask and thresholding the brightness to
get the color of the traffic light. The classical approach was
accurate at any distance and even for small traffic lights.

Fig. 7. Light Classification - Classical Approach

Fig. 8. Traffic Light Detection -YOLO

VI. OPTICAL FLOW

For this project, it is important to estimate the static and
dynamic objects in the environment in order for smooth
navigation and to avoid collision. We solve this problem using
the optical flow. We find the flow in the image by using aa
optical flow model and estimate the direction and magnitude
of velocity of the object in the image.

We start by testing the RAFT model[8] which estimates
the optical flow in the x and y directions and outputs a flow
image. Meanwhile, the Fundamental Matrix F is estimated by
computing the SIFT featues and extracting the corresponding
points. Once the correspondences are detected, the points on
image1 are reporjected to image2 and the Sampson distance[9]
is computed between the correspondences and the reprojected
points. Once, the distance is computed, the error is calculated
by the difference magnitude of the flow vectors and the
distance. Thresholding is done to check whether the object
is moving or static with the error computer computed.

We represent the stationary objects especially cars, SUVS
and trucks as green and the moving objects as red. We also
indicate the predicted motion of the car by displaying an arrow
on the car overhead. We faced couple of challenges while
predicting the movement. The major issue was determining
the threshold for each scene as the each scene is displayed
with different properties and threshold changes accordingly.
We planned on implementing variable thresholding by mean
average error but could not implement due to insufficient time.



Fig. 9. Optical Flow using RAFT

Fig. 10. Arrows indicating heading of vehicles

VII. HUMAN POSE ESTIMATION

Several methods exist in literature to estimate human pose
(be it 2D or 3D). OpenPose can be used to extract 2D pose
of the human but it is insufficient to create an armature that
would resemble the pose of the pedestrian. In other words, a
3D pose of the pedestrian needs to be estimated, either through
set of frames or using just a single frame. One such method
that was employed for this project was I2L-MeshNet by Moon
et al. [10].

I2L-MeshNet, in a nutshell, is a heatmap based 3D pose
and mesh predictor that generates a mesh file (.obj file that
can be imported in Blender) of the human detected using a
single frame. It used PoseNet and MeshNet in a cascaded
manner to estimate - a) lixel-based (line + pixel) 1D heatmap
of the human joints in the image. The joint information serves
as an important geometric feature that can provide important
information on the mesh vertex locations. This along with the
image features are fed to the MeshNet to predict the heatmaps
of each 3D human mesh vertex coordinates to generate the .obj
file. A sample output is shown in the figure below.

Fig. 11. Jogging Pedestrian and Rendered Mesh with Estimated Pose

As input to the model, the frame along with the bounding
box of the human is provided. This bounding box can be
obtained from object detection models like YOLOv8. The
generated mesh file is moved to the Blender object directory
and the process repeats for every frame (the same frame
multiple times if there are more humans).

VIII. SCENE RENDERING

Blender is a versatile computer graphics software tool that
provide the means to render the 2D dashcam footage for a
sleek visualization in 3D. Everything put together from the
output of various models discussed above, is then fed to
Blender as a single file. Object models for each of the detected
objects to be visualized were already provided.

A basic visualization of the simple features on the scene
submitted for Phase 1 of the project is shown below. For this
phase, emphasis was placed on the placement of the detected
objects (vehicles, pedestrians, etc). Given the pixel coordinates
of the centroid of each object, the camera extrinsics and intrin-
sics matrices are required to estimate the world coordinates of
the same point. The camera intrinsics data was provided and
the extrinsics was assumed (in our case, no translation and
a small pitch angle of 10◦. And so, the world coordinates
were identified and the objects were plotted on the Z = 0
plane. Color changes are also represented (in the case of traffic
lights and indicator lights) by change of material color of the
respective segments.



Fig. 12. Phase 1 output - Captured Footage vs Rendered Scene

For the second phase, few other features were also rep-
resented such as extra traffic assets (speed limit signs) and
pose of detected pedestrians. Improvement from Phase 1 to
Phase 2 in Blender representation was achieved by colouring
the relevant models and scaling down the objects to their real-
world sizes (the provided models were scaled up).

For both Phase 1 and Phase 2, lanes were plotted using
Bezier curves. With the points from the lane detection model
as the control points, there are methods to plot curves in
Blender, of which NURBS and Bezier are prevalent in use.
With the handles set as automatic to generate curves as smooth
where possible, a variety of lane markings can be plotted such
as dotted lines with a constant offset in the array of plane
meshes and solid lines that closely mimic the curve. In the
figure below, the solid lane markings, extra assets (dustbins
and speed limit signs), and pedestrian pose (shifted from the
default T-pose) is shown.

Fig. 13. Phase 2 output - Captured Footage vs Rendered Scene

As part of Phase 3, optical flow was implemented in which
moving vehicles in the frame of the car are represented in red
and stationary ones are represented as green. The video was
rendered for all 13 scenes with varying results. Depending
on the time of footage shot, the sky texture was modified
accordingly.

Fig. 14. Phase 3 output



Some of the pitfalls encountered during one-to-one repre-
sentation in Blender include partial detection of vehicles when
occluded. As it can be seen in the figure below, the bounding
box for the car behind the wall partially coincides with the
wall in front. This results in consideration of the depth data
of that pixel, which places the car right in front of the jogging
pedestrian (it is not the case in the footage). One possible
solution would be tracking the non-occluded part of the object
to extract the correct depth information. Another problem lies
in the case of height placement - cars on bridge or two signs
attached to the same pole.

Fig. 15. Blender Object placement - Occlusion Pitfall

Additional corner cases include when only a part of the
pedestrian is captured in the footage. For example, in the figure
below, the pedestrian is almost out of the frame but is detected.
In this case, only a small part of information is available
for the I2L-MeshNet to work with. This results in generation
of awkward poses that does not even remotely look like the
pedestrian in the frame. One solution would be excluding the
pedestrians in the corner since they do not provide valuable
information in any case or augmenting with information from
other cameras to estimate proper pose. In the likelihood of
only the upper part of the pedestrian captured in the footage,
similar bad results can be expected (see figure below). This
also applies to cases where the person is difficult to distinguish

from background.

Fig. 16. Blender Object placement - Human Pose Pitfall

Fig. 17. Blender Object placement - Human Pose when only part of body
visible



IX. EXTRA-CREDIT SPEED BREAKER DETECTION

The bonus part of the project included detection of speed
breakers in the image and projection in the blender environ-
ment. To achieve this, we implemented the YOLO v7 model
with the custom trained dataset [?] which detects the speed
breakers as bounding box. YOLO provides with centroid and
the width and height of the speed breaker. We infer the depth
of the bounding box centroid using the Marigold data and
project it on the environment. For creating a mesh. we create
a cylinder which has diameter equal to to the height of the
bounding box and length equal to the width. We then project
half the cylinder above the ground while the remaining half
gets buried under the ground.

Fig. 18. Speed Breaker in Blender

REFERENCES

[1] C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao, “Yolov9: Learning what you
want to learn using programmable gradient information,” 2024.

[2] X. Zhou, R. Girdhar, A. Joulin, P. Krähenbühl, and I. Misra, “Detecting
twenty-thousand classes using image-level supervision,” in ECCV, 2022.

[3] A. Mousavian, D. Anguelov, J. Flynn, and J. Kosecka, “3d bounding
box estimation using deep learning and geometry,” 2017.

[4] R. Birkl, D. Wofk, and M. Müller, “Midas v3.1 – a model zoo for robust
monocular relative depth estimation,” arXiv preprint arXiv:2307.14460,
2023.

[5] S. F. Bhat, R. Birkl, D. Wofk, P. Wonka, and M. Müller, “Zoedepth:
Zero-shot transfer by combining relative and metric depth,” arXiv
preprint arXiv:2302.12288, 2023.

[6] B. Ke, A. Obukhov, S. Huang, N. Metzger, R. C. Daudt, and
K. Schindler, “Repurposing diffusion-based image generators for monoc-
ular depth estimation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2024.

[7]
[8] Z. Teed and J. Deng, “Raft: Recurrent all-pairs field transforms for

optical flow,” 2020.
[9] H. Zhang and C. Ye, “Sampson distance: A new approach to improving

visual-inertial odometry’s accuracy,” in 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 9184–9189,
2021.

[10] G. Moon and K. M. Lee, “I2l-meshnet: Image-to-lixel prediction net-
work for accurate 3d human pose and mesh estimation from a single
rgb image,” 2020.


	Introduction
	Object Detection and Pose Estimation
	Depth Estimation
	Lane Detection
	Traffic Light
	Optical Flow
	Human Pose Estimation
	Scene Rendering
	Extra-Credit Speed Breaker Detection
	References

