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Abstract—An important aspect of any computer vision project
is the visualization of the output. In this project, we aim to create
a visualization of the onboard camera views of a Tesla car. We
achieved this by extracting various objects from the video and
rendering them through Blender.

I. DATA PREPARATION

Undistorted videos from the onboard cameras were pro-
vided, which we are using as the basis for this project.The
work on this project is divided into three parts, with each part
adding more features. To process the videos, we first extracted
frames from the videos by using OpenCV2. As the number of
frames are high, and processing them would not be a feasible
task, we reduced the count of frames by 10 times by selecting
only every 10th frame. We also used OpenCV2 to calculate
the front camera’s calibration matrix.
After extracting this, for each vehicle, we created an alternative
asset with visible red braking lights. Using the given Traffic
Light asset, we created 3 different traffic lights for red, yellow,
and green traffic lights. We also created a simple elongated
cylinder to resemble a speed hump.

II. OBJECT DETECTION

In this phase, we implemented the detection of lanes,
vehicles, pedestrians, traffic lights, and road signs. We first
calculate the depth of each part in a frame using Zoe Depth.
Zoe Depth is a deep learning model that gives the output of
depth data in a grey-scale image, where a completely white
pixel corresponds to a close object, and vice versa.

1. Lane Detection: Lanes were detected using CLRerNet.
Using this model, we get the points that correspond to a lane.
Further, we used a segmentation model (Masked RCNN) that
classifies the lanes into solid, dashed, and double lines. After
this, we took the points and found the points which lie inside
the bounding box of the classified segmentation bboxes. The
depth of each point is then calculated using Zoe Depth to
render in Blender.

2. Vehicle Identification: To detect the vehicle object on the
road, we use YOLO-World. YOLO-World is a real-time Open-
Vocabulary object detection model that supports prompt tuning
to detect classes. Using YOLO-World, we get a bounding box
for each type of vehicle. To detect a vehicle’s orientation, we
use YOLO-3D.

Fig. 1: Scene 1 - Input, ZoeDepth Output



Fig. 2: Scene 1 - Input, YoloWorld, Yolo3D outputs, Final

3. Pedestrians: To detect pedestrians, we used PyMAF
which directly gives us a blender mesh object(.obj file). The
location is obtained as a bounding box and the corresponding
depth of the person is then taken from Zoe depth. This model
consumes a lot of time and VRAM to compute, but the smpl
human mesh has the orientation and pose of the pedestrian
included in it. This mesh and the depth are then rendered
through Blender.

Fig. 3: Scene 8 Pedestrian Input, Output

4. Traffic Lights: We detected traffic lights using
YoloWorld and Yolo2d. The procedure, issue, and fix used
were the same as for vehicle type identification. The color of
the traffic lights was also detected using YoloWorld. The bbox
was used to calculate the location of the light which enables us
to get depth info from Zoe Depth. The corresponding colored
traffic light assets were then rendered through Blender.

5. Road Signs: Road signs such as Stop signs and speed
limit signs were detected through YoloWorld. Depth from Zoe
Depth was used to render the signs. We used EasyOCR to
detect the speed limit from the cropped bbox image of the
speed sign.

Fig. 4: Scene 10 Traffic Sign, Road Sign YOLO World Output

6. Road Objects: Road objects such as traffic cylinders and
dustbins were detected through YoloWorld. Depth from Zoe
Depth was used to render the objects.



Fig. 5: Scene 5 - Pedestrian, Trash can, Road Sign YoloWorld
output, Final

7. Brake Light Indication: To detect the brake lights, we
used tail-light-detection model which was trained based on
YOLOv8. The model detects the status of the brake light and
returns a label on whether the brake light was engaged or not.
If the light was engaged, the model used for a vehicle was
replaced with the corresponding alternative asset we created.

8. Stationary/Moving Vehicles: We used RAFT for optical
flow and Sampson distance from OpenCV2 to distinguish
between stationary and moving vehicles. Stationary cars are
rendered as green cars in our Blender renders.

III. EXTRA CREDIT

A. Speed Bumps

To detect speed bumps, we used YoloWorld to detect a road
sign. We then used EasyOCR on the speed sign. If the output
included the term ’hump’, we placed a speed hump asset near
the road sign, on the road.

IV. CHALLENGES AND WORKAROUNDS

A. Scaling in Blender

As all assets in individual blender asset files were of vastly
different sizes, placing them all and rendering them in a single
scene resulted in completely weird scaling. We solved this by

Fig. 6: Scene 9 Speed Hump Blender Output

applying a custom scaling on each blender object to bring all
objects to the same relative scale. Orientation was also fixed
this way by applying Euler rotations on them.

B. Camera Location

We had to change the camera location manually for a few
scenes where the vehicles were sometimes rendered below the
visible rendered images.

C. Vehicle Detection

One issue with Yolo3d was that the camera calibration
matrix used by the model resulted in incorrect outputs where
the bounding boxes were pointing in the wrong orientations.
To solve this, we replaced the camera calibration matrix that
we obtained using OpenCV2. After making this change, the
3D bounding boxes were pointing in the correct orientations.
Another issue with this method was that the centers of
bounding boxes of yolo3d and yoloworld were not equal.
To solve this, we implemented a simple algorithm (with
some similarities to non-max suppression) that calculates the
Euclidean distance between the center from yolo3d to all the
centers from yoloworld. The minimal distance distance is then
taken as the same object/car. Using this, we have the vehicle
type and their orientation.

D. Pedestrians

We first added an armature to the mesh provided and in-
tended to use this rigged setup to render humans. We obtained
the pose and location of the person through Yolov8 Keypoint
detection. However, rendering the person proved challenging
as we could not orient the person anatomically correctly. So,
we abandoned this approach and used the above-mentioned
approach.

E. Road Signs

One minor issue with this was with the orientation of the
signs as they were pointing away from the view initially. This
was resolved by applying an Euler rotation of π radians about
the Z axis in the Blender script.



F. Stationary/Moving vehicles

Our 10-frame skip approach to data generation resulted in
stationary cars being detected as moving in some situations,
as the time skip between frames was a bit high. Another issue
was that if our car speed and the speed of the car ahead were
the same, the optical flow and Sampson distance both resulted
in the car being detected as stationary. We applied a threshold
to the Sampson distance but it wasn’t always successful and
the threshold needs to be tuned further than we could in the
limited time.

V. RESULTS

A few frames from our renders are shown below.

Fig. 7: Scene 5 Blender Output

Fig. 8: Scene 5 Stop Sign Blender Output

VI. REFERENCES

1) YOLO3D: To Detect Bounding boxes and orientations of
the vehicles.

2) Yoloworld from ultralytics: To Detect
Bounding boxes of the types of vehicles, types of traffic
lights, person, traffic cone, speed limit sign, road signs,
speed breaker/hump, trash can. Traffic lights, Persons,
Stop Sign.

3) CLRERNet: To detect Lane Detection. Detects (Solid
Line, dashed Line, Double Line).

Fig. 9: Brake Light Demonstration

4) PyMAF: Generates human Mesh .obj files for every
frames.

5) EasyOCR: To detect text on the road signs.
6) ZoeDepth: To detect depth of the frames.
7) RAFT: To get optical flow b/w each frames.
8) https://github.com/gsethan17/

one-stage-brake-light-status-detection: To detect
car rear lights.
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