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Abstract—In this project, we develop 3D visualization of
the surroundings of an autonomous car, inspired by the Tesla
dashboard. The goal is to use different classical and deep learning
methods to identify various objects on the road and render them
in Blender to create a real-time 3D visualization.

I. INTRODUCTION

The advancement of autonomous vehicles stands as a monu-
mental leap in technology in recent years. As the presence of
these vehicles grows, the necessity for a user-friendly dash-
board for both drivers and passengers becomes paramount.
Such a dashboard must offer clear and comprehensible insights
into the vehicle’s environment and its status. This project
focuses on Tesla’s dashboard HMI (Human-Machine Inter-
face), crafted to ensure a smooth and intuitive user experience.
This allows individuals to interact with the car’s features and
functionalities seamlessly while on the move. Utilizing video
footage from a Tesla vehicle, the project’s objective was to
create visual representations of these sequences using Blender.

II. DATASET

The dataset includes:

1) Thirteen video sequences recorded in diverse environ-
mental settings, provided in both their unaltered raw for-
mat and versions that have been corrected for distortion
using calibration processes.

2) Videos intended for the calibration of cameras.

3) Blender assets for a range of entities such as vehicles
(e.g., sedans, SUVs, pickup trucks, bicycles, motor-
cycles, and trucks) and roadside infrastructure (traffic
signals, stop signs, traffic cones, traffic poles, speed
signs, and pedestrian models). Texture images for the
stop sign and a blank template for the speed sign are
also included.

III. PERCEPTION STACK
A. Object Detection

YOLO (You Only Look Once) is a renowned object detec-
tion framework, noted for its swift and accurate performance.
Originally introduced by Joseph Redmon et al. in 2016, it
has progressed through several updates, culminating in the
latest version, YOLO v8. Utilizing a single-shot mechanism,
YOLO employs an extensive convolutional neural network
(CNN) to analyze an image in a singular operation, facilitating
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Fig. 1: YOLO v8 object detection

the simultaneous prediction of bounding boxes and class
probabilities through an end-to-end network design.

For our project, we employed YOLO v8, which is adept at
detecting and classifying objects, in addition to performing
semantic segmentation on the identified items. Capable of
detecting up to 80 different classes including cars, trucks,
bicycles, traffic signals, stop signs, and pedestrians, YOLO
v8 outlines these objects with 2D bounding boxes. The co-
ordinates of these boxes were extracted using YOLO v8 and
recorded in a ’.csv’ file. The coordinates obtained were crucial
for determining the relative depth of detected objects, and for
the instantiation of objects within Blender.

B. Monocular Depth Estimation

Human depth perception, informed by cues like perspective
and shading, is emulated in computational models by depth
maps from the MIDAS model. MIDAS ("Million Depth An-
notations Samples”) utilizes a ResNeXt-based deep learning
architecture, trained on a vast dataset of RGB-D image pairs,
to estimate depth from visual features.

MIDAS produces a depth map with pixel shades indicat-
ing distance from the camera—darker shades signify closer
proximity, lighter shades indicate distance. By analyzing the
average depth within an object’s area, identified via the YOLO
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Fig. 2: MiDaS depth estimation

Fig. 3: Ultrafast lane detection

v8 network, against the image’s deepest point, we achieve a
measure of relative depth.

This approach facilitates the extraction of spatial informa-
tion from scene objects, thus improving analysis of visual
content.

C. Lane Detection

In lane detection tasks, we employ a model called Ultrafast
Lane Detection to identify the 2D coordinates of lane bound-
aries. Following the detection, we conduct post-processing to
render these points as continuous lines, enhancing the visual
representation.

D. 3D vehicle pose estimation

Determining the precise position and orientation (pose) of
vehicles is a crucial task for autonomous driving systems. To
achieve accurate 3D pose estimation, we employed the YOLO
3D model. Initially, the results were not optimal, leading us to
make several enhancements. The process starts with employing
the YOLOvVS model, particularly its YOLOv5x variant, for
its high precision in detecting 2D bounding boxes around
vehicles, despite its slower performance. This step was critical
in improving the quality of 3D pose estimations. Moreover, we

Fig. 4: Post-processed lane output

found that resizing images to 640x640 pixels before processing
significantly boosted the model’s accuracy. This size matches
the YOLOvVS’s optimal input dimension for 2D detection,
ensuring the process is finely tuned for the best results.

Following the detection of 2D bounding boxes, these details
are fed into a subsequent network within the YOLO 3D
framework to translate them into 3D space, generating 3D
bounding boxes. An essential aspect of this stage is focusing
on the vehicle’s yaw angle, identified by an angle called
alpha, which indicates the vehicle’s rotation around the vertical
axis. Considering that vehicles on roads typically maintain
zero pitch and roll angles simplifies the model without com-
promising on accuracy. Through these strategic adjustments,
we significantly enhanced the YOLO 3D model’s ability to
estimate vehicle poses, marking a substantial improvement for
the navigation and safety mechanisms of autonomous vehicles.
We can see in Fig. 5 that the blue surface of the detected box
shows the front of the vehicle.

E. Pedestrian pose estimation

For an autonomous vehicle to navigate safely, it’s crucial
to be aware of the location and actions of pedestrians in its
vicinity. This requires understanding the pedestrians’ poses to
anticipate their next moves. Initially, we utilized the OpenPose
model for pedestrian pose detection, which yielded satisfactory
results. However, we transitioned to a more advanced and
recent solution, the YOLOVS pose estimation model, which
enhanced our ability to accurately estimate pedestrian poses
within the scene. Although we successfully integrated this
model, we were unable to visualize the pedestrian poses in
Blender due to the project’s time limitations. Addressing this
and improving the visualization of pedestrian poses in Blender
remains a key area for future development in our project.

IV. VISUALISATION IN BLENDER

Blender plays a pivotal role in the domain of 3D creation
and animation, serving as an indispensable resource for both
personal endeavors and professional assignments. It boasts
a comprehensive suite of features and tools, complemented
by a vibrant community of enthusiasts and experts. For our
project, Blender’s robust capabilities and widespread adoption



Fig. 5: YOLO 3D bounding box estimation
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Fig. 6: YOLO v8 human pose estimation

make it an ideal platform for crafting sophisticated 3D content,
enabling us to visualize complex scenarios and interactions in
autonomous vehicle simulations with precision and creativity.

A. Rendering objects

The YOLO v8 model outputs the coordinates of bounding
boxes, identifying the outermost x and y points. We utilize

Fig. 9: Comparison of real image and its render in Blender

these coordinates in Blender to determine the central position
of each detected object by averaging these extremal points. In
Blender’s spatial framework, the X and Z axes are used to map
horizontal and vertical positions, respectively. The coordinates
from the YOLOv8 model are translated into Blender’s world
coordinates through the application of camera intrinsic and
extrinsic parameters. Additionally, depth information sourced
from the MiDaS model assists in accurately positioning ob-
jects closer or further from the camera within the Blender
environment.

B. Lanes

The 2D coordinates derived from the Ultrafast Lane De-
tection model are transformed into 3D world coordinates,
which are then used to fit a Bezier curve to these points. This
process allows us to accurately depict the lanes in Blender
with smooth, continuous curves that reflect real-world lane
geometry.

C. 3D pose of vehicles

The orientation of vehicles, specifically their yaw angles,
is derived from the YOLO3D model. These angles are then
applied to adjust the positioning of the vehicles within the
rendered scene.

Fig. 7: Comparison of real image and its render in Blender

Fig. 10: Comparison of real image and its render in Blender
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