
RBE 549 Project 3: Einstein Vision
UdayGirish Maradana

Robotics Engineering (MS)
Worcester Polytechnic Institute

Worcester, MA 01609
Email: umaradana@wpi.edu

Pradnya Sushil Shinde
Robotics Engineering (MS)

Worcester Polytechnic Institute
Worcester, MA 01609

Email: pshinde1@wpi.edu

Abstract—The following report consists of a detailed analysis
of engineering a perception stack for autonomous vehicles that
provides visualizations. A good visualization system takes in
sensory information and provides intuitive insights into how the
vehicle perceives the environment around it. Visualizations are
important for debugging the issues in the software and retrieving
feedback on the surroundings.
Keywords: Object Detection, Lane Detection, Pedestrian Pose
Estimation, Traffic Light Detection, Road Signs Detection,

I. PIPELINE OVERVIEW

As this project involved, multiple concepts and the integra-
tion of them , initially we have tried to understand the overall
pipeline and research around each of the individual concept
separately. The initial plan is to build a system which is
shown in Fig.1. So we started first with finding the calibration
matrices of the front camera as that was the most important
one. From the knowledge of previous projects, we were able
to estimate the camera calibration matrix(K) and then Rotation
and Translation and fixed according to the pose of camera in
blender.

II. METHODOLOGY

In each of the following phases, we will deploy Deep
Learning models to detect assets such as cars, traffic signals,
traffic cones, road signs, and pedestrians. We are given the
Blender models of each of the assets. We will render a scene
through each phase where these assets will be detected by the
autonomous vehicle.

A. Phase I: Basic Features

We will implement the following basic features:
• Lanes: Detect feature-specific lanes such as dashed,

colored, and/or solid.
• Vehicles: Identify cars and represent each one as a car

shape.
• Pedestrians: Identify and locate pedestrians where each

pedestrian will look the same.
• Traffic Lights: Identify traffic lights and their colors.
• Road Signs: Identify Stop Signs and apply the textures.

B. Phase II: Advanced Features

We will implement this phase by building upon the previous
one. We need to implement the following features to add more
granularity to the vision system which can aid in algorithmic
decisions in navigation modules.

• Vehicles: Classify (identify different vehicles) and sub-
classify them (identify different kinds of a type of ve-
hicle). We also need to identify the orientation of the
vehicle and display them as a 3D model.

• Traffic Lights: Classify arrows on the traffic lights.
• Road Signs: Identify arrow and speed limit signs.
• Objects: Identify objects like dustbins, traffic poles,

traffic cones, and traffic cylinders.
• Pedstrain Pose: Identify pedestrian pose in each frame.

C. Phase III: Bells and Whistles

• Break Lights and Indicators of Vehicles: Identify and
display the vehicle brake lights and indicator signals

• Parked and Moving Vehicles: Distinguish between
parked and moving vehicles and display. For the moving
cars, we also need to identify their moving direction and
display them.

D. Extra Credit: Cherry on Top

• SpeedBumps: We somehow got an approximate speed
bump position through the scene and road sign-based
information.

• Collison Prediction of Pedestrians or other vehicles as
a red highlight: We have explored both averaging of
optical flow segmented mask approach and using Multi
object tracker out of which Multi Object tracker felt like
a better approach as it does not need any threshold based
approaches for understanding which part of the scene
is moving. We have used Yolo Multi tracking approach
and got some track ids but were not able to completely
integrate this into the current Rendering pipeline.

III. IMPLEMENTATION

As mentioned in the Methodology, the primary aim is to
extract info regarding several concepts of the scene. As it is
hard to explain the different phases of each of the component
separately we combined the information here regarding each
exploration we did and the final model we have chosen with
the result.

A. Lane Detection & Classification

Lane Detection is one of the important steps for a
self-driving car pipeline. We initially started exploring
Traditional methods such as color thresholding and then



Fig. 1: Initial Planned Architecture

further understanding through Window search similar to the
implementation here. Udacity Implementation. The traditional
method comes with the downside of not being able to
generalize much. Then we decided to try out Deep learning
methods especially 3D Lane detection methods such as
PerFormer but after trying out to write custom inference
code for the same, we were not able to run the inference
as the weights provided by the author are old and the
architecture is modified in the recent branch. As all these are
time-consuming we shifted back to 2D Detection methods.
The primary reason for going towards models like Performer
is that they are trained on Self Driving car datasets such as
NuScenes which can give both the 3D lane information and
also the type or class of the lane belongs to such as whether
it is a white lane or dotted lane.

To achieve the same using 2D we went with a sequential
approach involving finding the 2D lanes and corresponding the
3D points using the camera’s intrinsic and extrinsic informa-
tion. Later we are able to find a Repository that implemented
a Mask RCNN-based segmentation and classifier of the lanes
and the Free road. Even though Segmentation-based models
work fine for lane detection and free lane detection, they
are not as accurate as special lane detectors. So we used

the Bounding box information from the Segmentation mask
boundaries and ran a point inside rectangle check on all the
2d points we got before from the DL network (CLRer Net).
Thus we were able to get the points and also get the labels
through this matching process. This has a caveat that there are
times when the matching fails, even though this can be solved
by approximation methods, for now we went with the simple
conditional where if the matching fails we resort to simply
making it as default solid line as that is having the highest
importance for safety. A simple explanation regarding CLRer
net is written below.
CLRer Net [4]: CLRer Net builds upon Cross Layer Re-
finement Network (CLRNet) which aims at fully utilizing
both high-level and low-level features in lane detection, by
improving the confidence of Lane Detection with LaneIoU.
In particular, it first detects lanes with high-level semantic
features and then performs refinement based on low-level fea-
tures. In this way, we can exploit more contextual information
to detect lanes while leveraging locally detailed lane features
to improve localization accuracy.
The results of CLRer Net + Mask RCNN-based classifier on
2D image and the 3D blender representation are shown in Fig.
5 and Fig. 6

https://github.com/udaygirish/Advanced_lane_finding_udacity)https://github.com/udaygirish/Advanced_lane_finding_udacity


Fig. 2: Lane Points CLRerNet (Red - - Dotted Lane, Green -
Solid White Lane

Fig. 3: Lane 3d points - RAW

B. Scene Object Level Information - Vehicles, Pedestrians,
Traffic Assets

Object detection is the core task of recognition, detection,
and classification of objects in an image. This can achieved
by many classifers, one such famous one who works out of
the box is Yolo from Ultralytics. Even though the latest stable
version from them (Yolov8) works out of the box and almost
detected people, cars, trucks, traffic lights, and stop signs from
the scene it failed at most of the Road sign detection and traffic
asset detection which are two important things which we need
for the project.
One more issue is the traffic light classification, we tried
doing the traditional way where we get the traffic light bbox
and extract the crop which gets passed to an HSV space
thresholding algorithm to get the information regarding the
dominating color in the crop. Even though this method was

Fig. 4: Lane 3d points - Corrected and Noise Removed

Fig. 5: Original Image of Lanes

Fig. 6: Blender Output



Fig. 7: Original Image for Object Detection

able to perform to some extent, it was very hard to make it
generalizable (Common case of Failure to generalization in
2D Computer vision). So, we shifted towards thinking deep
learning-based methods, and we kind of trained a ResNet-
based Traffic Sign Classification on Bosch Dataset, and the
results were good.
But in the end, we kind of searched for a simple method
as it again adds to the entire computation, even though this
project does not have constraints on computation, we took it
as a challenge to optimize as much as possible. So, we were
searching for more methods, and then we kind of got the idea
of why not to use Language-based modeling to understand
scene-level information to do this.
We found about Yolo V2 which kind of trained with open
vocabulary detection capabilities. With proper vocabulary
prompting, we were surprised to see that it almost gave all
the information we required and even performed decently to
subclassify and detect traffic signals based on the addition
of color to the text prompt. This resulted in us getting all
the information we required for the Objects. Some of the
detections and the information are shown in Fig.7 - 9.
Once we get the outputs, we need to process, the information
regarding each specific object separately which is explained
in the below sections.

C. Pedstrain Pose Estimation

After extracting the Object-level information from the scene,
the next thing to do is to extract pose-level information to
model the 3D human in the Blender. We tried to get the 3D
pose estimation method of humans and also tried to find 2D
pose estimation but both were not able to directly translate
to the modification of the 3D human pose in Blender. We
initially took the approach of getting the COCO 17 Keypoint
model (Mostly from Yolo Pose) (2D/3D) to model the mesh
in Blender. We tried the armature-based mesh modification
approach, and even though we were able to move the armature
and mesh it was pretty hard to generate good 3D configura-
tions. As we found some singularities in the position even

Fig. 8: 2D Object Detection - Yolo World

Fig. 9: Blender Ouptut with Brake lights implemented

after going with the Quaternion-based angle modeling. This
involves solving for a perfect Inverse Kinematics solution to
represent a human pose back to 3D as it is not a matching
problem. We found one of those methods which is the HybrIK
but this also took more time to implement.
Finally, we resorted to 3D Mesh estimation models such as
AlphaPose or PyMAF and found PyMAF was too easy to
implement and easy to import into Blender as it directly gives
a 3D mesh obj model which can be imported to Blender.
PyMAF also used a human model from SMPL which is the
most common format for human modeling-based approaches
in Deep learning. We Kind of used this to implement the
overall pipeline, these results are extracted and saved to a
folder. A brief explanation of both YoloPose and PyMAF is
here.

1) YOLO POSE [3]: It uses a novel heatmap-free approach
for joint detection and 2D multi-person pose estimation
in an image based on the popular YOLO object detection
framework

2) PyMAF [8]: To overcome misalignments between es-
timated meshes and image evidence, Pyramidal Mesh
Alignment Feedback (PyMAF) loop leverages a feature
pyramid and rectifies the predicted parameters explicitly
based on the mesh-image alignment status.

Even though PyMAF works open out of the box, there were



Fig. 10: PyMAF3D

times it was wrong and mostly tried to fit the entire human
mesh even in the crop of humans. We read that this was solved
to some extent in PyMAF SMPLX but we haven’t explored
that completely. Some of the results of Yolo Pose and PyMAF
are shown below in Fig. 10.

D. Tail Light /Brake Detection

Detection of Tail lights or indicator lights is crucial as that
helps the car behind to make better decisions as to whether
to stop or not. We have again tried to approach with the help
of Traditional CV algorithms, but the output of the method
is sometimes random and not generalizable, and took time to
tune the values. Further, we tried approaching the problem
with DL, and when we searched for it, we found a repo that
does Auto brake classification using Yolo v5. We adopted that
here and were able to understand whether the brake lights were
on or not.

E. Traffic Assets Detection

1) Road Signs & Stop Signs: We were able to classify most
of the Traffic Assets from the Yolo World but still, we were
left with classifying two important road signs. One is a Stop
Signal and the other one is a Parking meter or speed.

• From YOLO world we were getting Stop Sign detection
and further we also got generic road sign detection.

• For Generic road sign detection, we take the crop of
the Road sign detection image and then pass the image
to Optical Character Recognition (OCR), here we use
EasyOCR.

• The output from Easy OCR we use a matching logic to
see if numbers are there in OCR output if numbers are
there we extract them and get the speed on the road sign.

• If there is text we kind of extract the text and put it on
the Road sign.

• Overall this is quite an experimental approach and might
need more tuning. But it works!

Fig. 11: Speed Hump

2) Road Signs & Speed Humps - Extra: From the Yolov2
model, we were also able to identify the speed bumps, this
was done with two types, one by prompting the Yolo World
and the other by detecting of road signs and further checking
for ”road hump” and ”hump” text matching. Assuming in
North American datasets, we have a road sign near speed
humps, we could either do a detection from the scene or from
the text on the road sign and this was the intention behind
approaching in this way. Some of the outputs can be seen in
Fig. 11.

3) Road Markings: One more information, we need to
extract is the Road sign information painted on the road. This
is very important for Lane changing and taking turns on a
highway or parking. To do this, what we did is to use Yolo P
to get the drivable segmentation area and further get a mask
of this segmented area. Once we got this masked area we did
Edge and Contour Operations on it to understand the contours.
From the contours, we were able to perfectly get a Polygo-
nal bounding box around the Road signs, especially arrows.
Further, we used a Maximum directional change estimate to
understand the arrow direction. From this method, we were
perfectly able to know what the sign especially especially
whether the arrows are showing towards left/right/forward.
This we haven’t got time to render in a blender with some
additional flags. Some of the 2D outputs from this can be
seen in Fig. 13.

F. 3D Object Detection

Even though we have 2D object detection, we need the
orientation and scale to place the 3D assets in the scene.
To do this we need some sort of 3D estimation and Yaw
orientation of the object. This can be achieved with the help
of 3D regressors. One such method is Yolo 3D estimation
which is open source implementation of a regressor combined
with Yolov5 2D model outputs. We used this model to get the
Orientation and scale of the 3D object. Some of the Yolo 3D
outputs can be seen here in Fig. 14 .

G. Depth Estimation

As most of the information we get from the above methods,
is 2-dimensional. We need a way to convert them to 3D
information. One way to do this is to use the stereo method
or use Monocular depth estimation. Here as we concentrate



Fig. 12: Frame Output from YoloPV2

Fig. 13: Frame Output from YoloPV2

Fig. 14: Frame Output from YoloPV2

Fig. 15: Yolo 3D Ouptut

on the front camera view, we use Monocular Depth from the
Front camera image. So, for every 2D estimation, we take
the center of the bounding box get the respective depth, and
transform the coordinates to 3D world representation using
camera intrinsic and extrinsic information. Two such popular
implementations are ZoeDepth and Marigold. We tried both,
implementations and found both good and work out of the box.
Marigold is along the concepts of Diffusion models therefore
takes heavy memory we even tried the faster version but still
it was consuming almost 8GB VRAM, which might not fit
in the current pipeline we designed as we are running locally
on 16 GB VRAM. So, we stick with ZoeDepth, even though
sometimes it gives a bit bad result, because of that we might
see some random flickering in the scenes, these can be further
reduced by using good Depth maps adding more constraints,
and better fine-tuning the params.

1) ZoeDepth [5]: This model has been deployed to es-
timate depth from a single image. It focuses on gen-
eralizing performance across multiple datasets while
maintaining the metric scale (metric depth estimation).

2) Marigold [6]: Another model that focuses on depth
estimation from a single RGB-D image. Marigold ex-
hibits excellent zero-shot generalization and without ever
having seen real depth maps, it attains state-of-the-art
performance on several real datasets.

H. Classification of Static and Moving Objects

Understanding the movement of objects in a frame is highly
important as it helps us to avoid potential dynamic objects.
So in a Driving scenario understanding moving of people
and the vehicles is important. This can achieved by multiple
methods such as Multi-Object trackers tracked across t frames,
Feature based Point level tracking, Traditional KCF Tracker
with Hungarian methods, and one of the other cool concept
to understand motion is literally understanding pixels. This
understanding of pixels is Optical flow, when optical flow is
combined with Sampson Distance or any other geometrical



Fig. 16: Depth Output from Marigold - Colored

distance calculation and threshold we should be able to rel-
atively understand which objects are dynamic and which are
static in the scene assuming we have some prior information
about sizes of the objects and perfect threshold.

Optical flow Concept: Let two image frames captured at t
and t+δt be denoted as It and It+δt respectively. Further, let
the 3D linear and angular velocities of the camera in this time
be V =

[
Vx Vy Vz

]T
, Ω =

[
Ωx Ωy Ωz

]T
. Optical flow

at a pixel x =
[
x y

]T
is defined as the apparent velocity of

the corresponding 3D world point and is given by

ṗx =
1

Zx

[
xVz − Vx

yVz − Vy

]
+

[
xy −(1 + x2) y

(1 + y2) −xy −x

]
Ω

Here, Zx denotes the depth at a pixel x which is commonly
called the structure.

Further we use Sampson distance,

dS(xi, x
′
i) =

(x′
iFxi)

2

(row(F1xi)2 + row(F2xi)2 + row(FT
1 x′

i)
2 + row(FT

2 x′
i)

2)

Here we use the Fundamental matrix which we obtained
between the images at t and t+ 1.

Here, we use RAFT as a Deep learning method, and further
use the flow from the network and apply sampson distance.
Further based on a threshold we classify whether a object is
moving or not.

I. Multiple Object Tracking -Extra
We have also explored the Multi Object Tracking to under-

stand the Track id’s and our current pipeline is constructed
keeping in mind to adapt to track the ID’s but because of time
constraints we didn’t complete the logic to

J. Scene Classification

We further went ahead to understand Scenes, which we felt
as one of the good information to give an overall probability
on how well models can perform. This is just an ideation step

Fig. 17: Multiple Object Tracking

and usually, this is a parameter for some of the DL frameworks
where they are trained on different scene types data to ensure
predictability and generalizability. We have trained a custom
ResNext 34 to get this, for which the results can be seen in
Fig. 17 - 18. We did not get time to add this information to
the current Blender implementation.

1) ResNeXt 34 on Multiclass Weather Dataset [7]: We build
a custom Scene Classification model based on ResNeXt
[9].

Fig. 18: Scene Classification

IV. FINAL PIPELINE

The Final pipeline architecture is in Figure . This shows the
complete flow of getting the complete flow from it.



Fig. 19: Scene Classification

Fig. 20: YOLO World Output

V. DISCUSSION

• We are successfully able to run and integrate most of the
models all running on the same system with less than 20
GB RAM and 12 GB VRAM.

• We could make the results much better with integrating
more deeper and diffusion based or attention based mod-
els but that will maxout the current configuration and it
may happen that we get lot of files to play with it.

• Our pipeline generates everything online and saves ¡ 20
MB file for the entire video which contains essential
information to render the video from Blender.

• This pipeline can essentially run on an Edge GPU.
• Some of the issues we faced are the timeline is a bit

constraint and also may be it would be better to restruc-
ture this project into phases of each algorithms rather
than upgrading everything one after the other. Means,
it is better we fully make one concept working and

Fig. 21: YOLO World Output

make the whole pipeline, changing concepts in the middle
is a bit challenge and sometimes we are finding some
interesection which might need the pipeline structure to
change a bit. But this needs proper planning.

• Most of the models which are latest in CVPR and papers
with code are heavy so might not be feasible to use them.

REFERENCES

[1] T. Cheng, L. Song, Y. Ge, W. Liu, X. Wang, and Y. Shan, ‘YOLO-World:
Real-Time Open-Vocabulary Object Detection’, arXiv [cs.CV]. 2024.

[2] W. Ali, S. Abdelkarim, M. Zahran, M. Zidan, and A. E. Sallab,
‘YOLO3D: End-to-end real-time 3D Oriented Object Bounding Box
Detection from LiDAR Point Cloud’, arXiv [cs.CV]. 2018.

[3] D. Maji, S. Nagori, M. Mathew, and D. Poddar, ‘YOLO-Pose: Enhancing
YOLO for Multi Person Pose Estimation Using Object Keypoint Simi-
larity Loss’, arXiv [cs.CV]. 2022.

[4] H. Honda and Y. Uchida, ‘CLRerNet: Improving Confidence of Lane
Detection with LaneIoU’, arXiv [cs.CV]. 2023.

[5] S. F. Bhat, R. Birkl, D. Wofk, P. Wonka, and M. Müller, ‘ZoeDepth: Zero-
shot Transfer by Combining Relative and Metric Depth’, arXiv [cs.CV].
2023.

[6] B. Ke, A. Obukhov, S. Huang, N. Metzger, R. C. Daudt, and K. Schindler,
‘Repurposing Diffusion-Based Image Generators for Monocular Depth
Estimation’, arXiv [cs.CV]. 2024.

[7] Multi Class Weather Dataset
[8] H. Zhang et al., ‘PyMAF: 3D Human Pose and Shape Regression with

Pyramidal Mesh Alignment Feedback Loop’, arXiv [cs.CV]. 2021.
[9] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, ‘Aggregated Residual

Transformations for Deep Neural Networks’, arXiv [cs.CV]. 2017.

https://www.kaggle.com/datasets/pratik2901/multiclass-weather-dataset


Fig. 22: Final Pipeline Architecture


	Pipeline Overview
	Methodology
	Phase I: Basic Features
	Phase II: Advanced Features
	Phase III: Bells and Whistles
	Extra Credit: Cherry on Top

	Implementation
	Lane Detection & Classification
	Scene Object Level Information - Vehicles, Pedestrians, Traffic Assets
	Pedstrain Pose Estimation
	Tail Light /Brake Detection
	Traffic Assets Detection
	Road Signs & Stop Signs
	Road Signs & Speed Humps - Extra
	Road Markings

	3D Object Detection
	Depth Estimation
	Classification of Static and Moving Objects
	Multiple Object Tracking -Extra
	Scene Classification

	Final Pipeline
	Discussion
	References

