
Project 3 - Einstein Vision
Karthik Mundanad

Robotics Engineering Department
Worcester Polytechnic Institute
Email: krmundanad@wpi.edu

Kushagra Srivastava
Robotics Engineering Department

Worcester Polytechnic Institute
Email: ksrivastava1@wpi.edu

Using 3 LATE days
Abstract—The project focuses on visualizing and recreating the
front-end dashboard of a self-driving automobile, which is
capable of detecting and perceiving different elements on the
road, such as lanes, vehicles, pedestrians, traffic lights, signs, and
so forth. This aids in determining the next course of action for
the vehicle’s planning stack. For the task, a variety of methods
and deep learning models are used. An overview of the detection
and rendering processes for each component is provided in this
report. It is primarily split into three stages. The recognition of
vehicles, pedestrians (without pose), lanes, and significant road
signs is the focus of the first phase. In the second phase, the
cars are subclassified and several objects, such as dustbins and
traffic cones, are detected in the scene. The third stage involved
identifying indicators on the vehicles along with distinguishing
moving from parked cars.

I. INTRODUCTION AND BLENDER

The project employs multiple deep-learning models to de-
tect various objects within the scene, which are then simulated
in Blender. In this process, objects are spawned at different
locations within the scene according to their detections. Infor-
mation is stored using JSON files for each network, along with
blend files for the objects. Scene semantics are then rendered
for each frame and saved as a sequence of images. Various
Blender functionalities, including Bezier curves, meshes, and
object files, are utilized for this purpose. The following sec-
tions delve into the detection procedure for each component
and the corresponding rendering methods in detail.

II. PHASE - 1

A. Identification of Vehicles, Pedestrians and other objects

The project extensively relies on Meta’s Detic [1] to detect
various objects in the scene, including vehicles, pedestrians,
stop signs, dustbins, and traffic cones, among others. Lever-
aging CLIP integration, this network provides specific object
masks and bounding boxes based on custom text prompts.
While other models such as Grounded SAM [2], [3], [4] were
tested, their high inference time and minimal performance
enhancement led to their exclusion from the final rendering
process.

To facilitate rendering, a depth estimation network is re-
quired to ensure consistency and generalizability of outputs.
Various networks, including MiDaS [5] and ZoeDepth [6],
were evaluated. While ZoeDepth demonstrated satisfactory
results, particularly with lanes as discussed in the subsequent
section, it faltered in numerous scenarios. To address these

Fig. 1: Depth Map from Marigold

limitations and enhance depth estimation, Marigold was em-
ployed. Marigold consistently provided depth estimates along
with a fixed scale. An example of the depth map can be seen
in Figure 3. By combining the output masks from Detic and
depth information from Marigold, objects could be accurately
spawned in the simulation environment.

However, despite the acceptability of results obtained
through these methods, several drawbacks persist. False de-
tections by Detic remain a challenge, although adjusting
confidence levels can mitigate this issue, albeit with varying
efficacy across scenes. Additionally, Marigold’s depth estima-
tion is less accurate for nearby objects, especially evident in
lane scenes where convergence of lines occurs.

B. Traffic Lights

The project utilized a YOLO v3 model pre-trained on the
LISA Dataset [7] to detect traffic lights and arrows in the
scenes. While Detic provides traffic light masks, which can be
processed using various thresholding methods to detect colors,
the outputs are heavily influenced by scene conditions. The
YOLO v3 model, on the other hand, offers distinct classes
such as ’stop’, ’warning’, and ’go’, including variations like
’stop left’ and ’go left’, facilitating direct rendering of traffic
lights based on depth information from Marigold depth maps.

However, the YOLO v3 model exhibits limitations in gener-
alizability, particularly when multiple traffic lights are present.
Moreover, it tends to be biased towards detecting ’go left’
arrows, leading to false detections in certain cases.



((a)) Traffic Cone Detection using Detic

((b)) Dustbin Detection using Detic

Fig. 2: Object Detection example using Detic

Fig. 3: Traffic light mask using YOLO v3

C. Lanes

Various deep learning frameworks were evaluated for lane
detection, each with its own limitations. ClRNet and its
variants [8] demonstrated good performance in highway sce-
narios, but their output of separate instances for different lanes
made lane classification challenging. Classical methods, while
providing separate instances, struggled with curved lanes.

Ultimately, a MASK RCNN with ResNet50 backbone,
utilizing pre-trained weights [9], was tested. This model
successfully detected various classes such as ’Solid line’,

’Divider line’, ’Dashed line’, and ’Road Sign lines’. The
distinct masks for dashed lines allowed the direct fitting of
lanes in Blender using their endpoints. However, when lanes
were too close to the camera, sampling points on contoured
lanes and fitting Bezier curves did not yield satisfactory results.
As a workaround, a row-wise average was taken along the
image to obtain aligned points.

Despite its effectiveness, the Mask RCNN network exhibits
shortcomings in certain scenarios, such as the detection of
curbs and curbside lanes. Moreover, its reliability diminishes
when lanes are near the vehicle, such as in city road scenarios.

Fig. 4: Road Sign detection using Mask RCNN

III. PHASE-2

A. Vehicle Subclassification and other objects

As outlined in Section II-A, Detic boasts an extensive
custom vocabulary encompassing various objects, including
different subtypes of vehicles such as sedans, SUVs, pickup
trucks, trucks, motorcycles, bicycles, and more. Achieving ac-
ceptable results necessitated fine-tuning the confidence levels
associated with each class. While classes like motorcycles
and bicycles were detected straightforwardly, the presence of
multiple prompts per image required a systematic sorting of
subclasses to ensure accurate detection.

This method effectively filters out many outliers, yet occa-
sional misclassifications may occur, particularly depending on
the depth of the scene. Despite this, the systematic approach
employed significantly improves the overall accuracy of vehi-
cle detection within the scene.

B. Vehicle Pose Estimation

In the task of obtaining 3D bounding boxes from Detic’s
2D bounding box outputs, we faced challenges due to the
limited availability of open-source networks. To address this,
we turned to a YOLO3D network. However, the pre-trained
weights proved to be inaccurate, often resulting in significant
offsets.

To mitigate this issue, we employed a workaround by
passing the 2D bounding box from Detic to the regressor of
the YOLO3D network. The output, specifically the yaw, was
then utilized to spawn the vehicles accordingly. The results of
this approach are depicted in Figure ??.



Fig. 5: Detic Vehicle detection and subclassification of vehicles

Despite the effectiveness of this method, certain inaccu-
racies were observed, particularly with trucks and pickup
trucks. Additionally, orientation errors became apparent when
objects were occluded or close to the camera. While this
approach provided satisfactory results in many cases, further
refinement may be necessary to enhance accuracy, particularly
for complex objects and challenging scenarios.

Fig. 6: 3D pose detection of vehicles

C. Pedestrian Pose Estimation

Initially, pedestrian poses were detected using a YOLO V8
and YOLO NAS model [10] with pre-trained weights. The
strategy involved extracting keypoints and projecting them
in 3D, then feeding this information to Blender’s armature
function. However, the proximity of key points led to similar
depth estimates for joints, complicating the armature func-
tion’s comprehension. To streamline the process, we opted for
networks capable of directly providing poses in file formats
supported by Blender. One such network is OSX [11], which
detects human poses and generates meshes in .obj format using
SMPL models [12]. However, the meshes generated were in
a coordinate frame different from ours, necessitating modifi-
cation of the provided code to align the mesh with Blender’s
world coordinate system using depth masks generated earlier.
The results showcased in Figure ?? and 7 demonstrate accurate
estimates, eliminating the need for separate methods for pose
estimation and rendering.

Fig. 7: Pedestrian Pose visualization using OSX

D. Traffic Sign Detection

A custom YOLO v8 model, specifically trained on the LISA
Traffic Sign dataset, was meticulously developed to detect
an array of signs commonly encountered on roads. These
included crucial indicators such as stops, pedestrian crossings,
lane ends, speed limits, and several others. Through rigorous
training over 25 epochs, the model achieved an impressive
validation mAP of 0.96, indicating its robust performance in
accurately identifying traffic signs within diverse scenes. The
results, as showcased in Figures 12 and ??, highlight the
model’s proficiency in detecting these signs, thus affirming
its efficacy in enhancing road safety and navigation. Notably,
the model was engineered to provide detection for a wide
range of sign classes, totaling 46, which encompassed various
speed limits and speed breaker signs commonly encountered
on roadways.

However, an inherent bias towards the ”35mph” sign was
observed in the model’s detections pertaining to speed limits.
Despite efforts to mitigate this bias through the implementation
of classical methods, the endeavor was hindered by time con-
straints, resulting in less-than-optimal outcomes. Nonetheless,
the model’s overall performance and its ability to accurately
identify a multitude of traffic signs underscore its significance
in enhancing traffic management and safety measures on roads.

E. Road Signs

Several networks designed for road sign detection are pri-
marily trained on European datasets, making them less accu-
rate for our specific scenario. To circumvent this limitation, we
opted for a more streamlined approach by leveraging the Mask
RCNN discussed in Section II-C. This versatile model allowed
us to directly create a mesh from its output, eliminating the
need for additional sampling or curve fitting, as required for
lanes. This elegant method not only simplified the process but
also ensured accurate detection of road signs tailored to our
environment. The results obtained through this approach are
depicted in Figure 9 and ??, showcasing the effectiveness and
precision of the method in rendering road signs within our
scene.



((a)) Image 1

((b)) Image 2

Fig. 8: Traffic Sign Detection using YOLO v8. Image 2
indicates speed limit bias.

Fig. 9: Road Sign detection using Mask RCNN

IV. PHASE-3

A. Brake and Turning Lights

The Detic model is employed for car taillight detection,
with subsequent bounding box acquisition. Following BGR to
YCrCb conversion, erosion is applied using a 5x5 kernel to
enhance image clarity. Adaptive thresholding is then utilized
to retain pixels surpassing a specified luminance threshold.
A pixel count threshold of 220 is set to classify taillights as
”on”. In each frame, bounding boxes of all cars are retrieved,

and centroid points for detected taillights within each box
are established as pairs. The signaling behavior of vehicles
is determined through conditional checks. Specifically, if the
right taillight is classified as ”on” while the left is ”off”,
the car is interpreted as indicating a right turn, and vice
versa. Conversely, if both taillights are ”on”, the vehicle is
considered to be braking, while both being ”off” suggests
the absence of braking signals. Despite its effectiveness in
precise taillight detection and accurate inference of vehicle
signaling behavior, this methodology exhibits limitations in
generalizability between day and night scenes, primarily due
to variations in taillight color intensity caused by sunlight.

B. Classification of Parked and Moving Vehicles

Distinguishing between parked and moving vehicles
presents numerous challenges, encompassing various edge
cases. Our approach relies on utilizing the optical flow estimate
provided by RAFT [13]. Initially, we employed a straight-
forward method of thresholding the flow image based on
the Sampson distance to distinguish dynamic obstacles from
relatively stationary objects. However, this method has several
limitations. Firstly, vehicles in front of us or those at a distance
exhibit low flow rates, leading to potential misclassification.
Additionally, the threshold for distinguishing between parked
and moving vehicles varies from frame to frame and scene to
scene.

To address these shortcomings, we augmented the original
flow map with certain enhancements. To account for the flow
of our own vehicle, we created a 1D Gaussian mask for each
image, with the variance of the Gaussian proportional to the
variance of flow in the image. This adjustment acknowledges
that flow towards the edges tends to be greater than in the
center. Furthermore, we computed and compared the flow
within the bounding box of the vehicle with the flow in the
surrounding region. We set a threshold on this net flow, as
well as an adaptive threshold based on the flow of the entire
image, for the absolute flow within the bounding box. This
adaptive threshold considers that the absolute flow of moving
vehicles in front may be low and thus should be disregarded.
These refinements aim to enhance the accuracy and robustness
of distinguishing between parked and moving vehicles. The
results are presented in ?? and 11

C. Extra Credit - Speed Breakers

Speed breakers were detected based on 3 factors. The speed
breaker sign which is detected using the YOLO v8 Traffic
sign network, the road sign which is present on the speed
breaker, and the brake lights of cars while on a speed breaker.
A combination of these methods is necessary for the detection
of a speed breaker as only one or more factors may be absent
or inconsistent depending on the scene.

V. CONCLUSION

To sum up, our project is a thorough undertaking meant
to progress the domain of scene interpretation and computer



Fig. 10: Optical Flow image

Fig. 11: Classifying based on Parked and moving cars - Arrows
indicate the flow rate

vision for traffic control applications. By combining cutting-
edge models and techniques, we have created a strong frame-
work that can recognize and comprehend a wide range of
objects in urban settings, such as lane markings, traffic signs,
pedestrian positions, and car actions. Utilizing state-of-the-
art methods including object detection, signal interpretation,
and 3D position estimation, we have accomplished impressive
results in traffic analysis and scene reconstruction. Although
we faced obstacles and constraints in the process, our work
demonstrates how cutting-edge computer vision techniques
might improve traffic efficiency, road safety, and urban mo-
bility. Further development and improvement of our system
may eventually lead to even more sophisticated and impactful
solutions in the realm of intelligent transportation systems.

((a)) Speed Breaker traffic sign

((b)) Speed Breaker Road Sign

Fig. 12: Speed Breaker Detection

Fig. 13: Blender Output 1

REFERENCES

[1] X. Zhou, R. Girdhar, A. Joulin, P. Krähenbühl, and I. Misra, “Detecting
twenty-thousand classes using image-level supervision,” in ECCV, 2022.

[2] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick,
“Segment anything,” arXiv:2304.02643, 2023.

[3] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang,
H. Su, J. Zhu et al., “Grounding dino: Marrying dino with grounded pre-
training for open-set object detection,” arXiv preprint arXiv:2303.05499,
2023.

[4] T. Ren, S. Liu, A. Zeng, J. Lin, K. Li, H. Cao, J. Chen, X. Huang,
Y. Chen, F. Yan, Z. Zeng, H. Zhang, F. Li, J. Yang, H. Li, Q. Jiang, and



Fig. 14: Bledner Output 2

Fig. 15: Bledner Output of Dustbin

L. Zhang, “Grounded sam: Assembling open-world models for diverse
visual tasks,” 2024.

[5] R. Birkl, D. Wofk, and M. Müller, “Midas v3.1 – a model zoo for robust
monocular relative depth estimation,” arXiv preprint arXiv:2307.14460,
2023.

[6] S. F. Bhat, R. Birkl, D. Wofk, P. Wonka, and M. Müller, “Zoedepth:
Zero-shot transfer by combining relative and metric depth,” arXiv
preprint arXiv:2302.12288, 2023.

[7] sovit 123, “Sovit-123/traffic-light-detection-using-yolov3: Traffic light
detection using deep learning with the yolov3 framework.
pytorch =¿ yolov3.” [Online]. Available: https://github.com/sovit-123/
Traffic-Light-Detection-Using-YOLOv3?tab=readme-ov-file

[8] T. Zheng, Y. Huang, Y. Liu, W. Tang, Z. Yang, D. Cai, and X. He,
“Clrnet: Cross layer refinement network for lane detection,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2022, pp. 898–907.

[9] sovit 123, “Sovit-123/traffic-light-detection-using-yolov3: Traffic light
detection using deep learning with the yolov3 framework.
pytorch =¿ yolov3.” [Online]. Available: https://github.com/sovit-123/
Traffic-Light-Detection-Using-YOLOv3?tab=readme-ov-file

[10] S. Aharon, Louis-Dupont, Ofri Masad, K. Yurkova, Lotem Fridman,
Lkdci, E. Khvedchenya, R. Rubin, N. Bagrov, B. Tymchenko, T. Keren,
A. Zhilko, and Eran-Deci, “Super-gradients,” 2021. [Online]. Available:
https://zenodo.org/record/7789328

[11] J. Lin, A. Zeng, H. Wang, L. Zhang, and Y. Li, “One-stage 3d whole-
body mesh recovery with component aware transformer,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2023, pp. 21 159–21 168.

[12] J. Williams. [Online]. Available: https://smpl.is.tue.mpg.de/
[13] Z. Teed and J. Deng, “RAFT: recurrent all-pairs field transforms for

optical flow,” CoRR, vol. abs/2003.12039, 2020. [Online]. Available:
https://arxiv.org/abs/2003.12039


