Computer Vision - Project 3:
Einstein Vision

USING 2 LATE DAYS in Phase 2

Jesdin Raphael
Worcester Polytechnic Institute
Worcester, MA, USA
Computer Science

Email: jraphael@wpi.edu

I. PHASE 1

The goal in phase 1 was to detect all the Basic Features
which included:

1) Lanes

2) Vehicles

3) Pedestrians

4) Traffic Lights

5) Road Signs (Primarily Stop Signs)

A. Overview of pipeline

For generating the data, we obtained every 10th frame from
the undistorted videos of the front camera. The next step was
to detect objects (including lanes) using various deep learning
models on all these ’key’ frames, and extract bounding box
centers and labels. Bounding box centers were then computed
in pixels, and these pixel coordinates were then converted
to real-world coordinates, using depths (Z) obtained from
a monocular depth estimation model. The equations used to
project the points were:

Z(x — cy)
fa
Z(y — ¢y)
fy

Where, X, Y and Z are real-world coordinates, while x and
y are pixel coordinates. f, and f, are focal lengths in pixels,
while ¢, and ¢, are principal point coordinates. These camera
intrinsic parameters were obtained by calibrating the camera
ourselves. One important thing to note is that in our coordinate
frame setup in Blender, the Y coordinate was only relevant for
the traffic lights since we assumed that everything is flat, so
nothing on the road has any vertical height, so for traffic lights
all three coordinates were relevant, but for the rest we assumed
vertical height was always 0. All objects were placed similarly
in the blender scene, even the lanes.

X = 6]

Y = 2)

B. Object Detection

In phase 1, for all object detection which included cars,
pedestrians, traffic lights and road signs, we used a model

Harsh Verma
Worcester Polytechnic Institute
Worcester, MA, USA
Robotics Engineering

Email: hverma@wpi.edu

Muhammad Sultan
Worcester Polytechnic Institute
Worcester, MA, USA
Robotics Engineering

Email: msultan@wpi.edu

called YOLOV8 [I]]. Figure 1 shows a sample output of the
YOLOVS object detection model.

traffic light 0.71

|
\A ,‘
traffic_light 0.66

Fig. 1: Yolov8 Sample Output

This model gave us the object labels, but it did not give us
their orientation. We did the orientation part in phase 2.

C. Lane Detection

The lane detection part was done using a Mask RCNN
[2]]. This model classified the lane markings into six different
classes:

1) divider-line

2) dotted-line

3) double-line

4) random-line

5) road-sign-line (Arrows)

6) solid-line
A sample output of the model is shown in figure 2. We treated
the solid line, divider line and double all as a solid line for ease
of plotting in blender. Using the bounding boxes, we obtained
multiple points on the marking area and then projected those
points into the real-world in blender (exactly like objects) and
then fit bezier curves to them. For the direction markers, we



obtained all the points in the entire mask and similarly project
them in blender.

_road-sign—line
i—linei—line

Fig. 2: Mask RCNN Sample Output

Figure 3 shows how we plotted the arrows in blender by
projecting each point in the mask of the arrow.

Fig. 3: Arrow plot in blender

D. Depth Estimation

For depth estimation, in phase 1, we used ZoeDepth
to get metric depth maps and then use those to get depth at
the detected object bounding box center pixel coordinates. The
depth was then used in equations 1 and 2 to project the objects.
This model was good, but the scale sometimes changed from
one frame to other quite drastically. This resulted in objects
suddenly coming very close to the camera or going very far
away. This model was later replaced in phase 3.

E. Blender

The blender part was executed as explained in the previous
sections. One extra thing to note is that all distances had
to be scaled, because the object models provided were quite
large compared to the metric coordinates we were calculating.
However, the relative positioning of the objects stayed the
same. Figure 4 and Figure 5 show a sample output of a scene
render in Blender and its corresponding image.

Fig. 4: Actual Image from Scene 1

Fig. 5: Rendered Image from Scene 1

II. PHASE 2
A. Vehicle Classification

In this phase, we performed vehicle classification, as pre-
viously we treated all vehicles as cars. The vehicles were
classified into car, truck, bus, motorcycle and bicycle. This
classification was also don’t using YOLOVS. Further sub-
classifications were done in phase 3, where YOLOvV8 was
replaced with another model which had a lot more labels.

B. Vehicle Orientation Estimation

For vehicle orientation estimation, we used a framework
with two models called YOLO3D [4]. The first model was
a YOLOVS used to detect 2D bounding boxes, and the other
one was used to detect 3D bounding boxes using the results of
YOLOVS5 model. We already had the position using YOLOVS,
so we only extracted the yaw angle from this model’s outputs.
In this approach there was a problem that YOLO3D did not
detect the same number of cars as YOLOVS so there were
sometimes vehicles detected by YOLOvS that did not have
a corresponding orientation from YOLO3D. Furthermore, we
did not know which bounding box in YOLO3D corresponded
to which bounding box in YOLOvVS. To fix, this we assigned
assigned the YOLOVS8 detections the orientation of the closest
3D bounding box (using euclidean distance). That way each



vehicle would have an orientation, even in cases where there
is a mismatch in the detections from the two models.

The results of this model were not too promising. Especially
when the cars were occluded, or not completely visible in the
image. This was becuase the model assumed the 2D boudning
box to be tight, and that would not be the case when objects
are occluded or cut in the scene. The model also only detected
certain object like cars, trucks, bicycles, etc so it did not give
orientations of other objects, because it wasn’t trained to do
so. These problems could have been solved had we trained the
model on a better dataset, or if we had found a better model,
but due to time constraints, we stuck to this one. All the 3D
bounding boxes predicted by this model had a pitch value that
made them point upwards or downwards. We ignored this,
since we were only interested in the yaw value. A sample
output of this model’s detection is shown in Figure 6.

Fig. 6: Sample output of YOLO3D

C. Human Pose Detection (Pedestrians)

For human pose detection, we decided to use a model called
Hybrik [5]], because its output could be loaded into blender.
However, there was a problem with the model, that it only
detected humans properly if they were in the center of the
image. This is shown in Figure 7 where the model detected
the car as a human and tried to fit a model to it. To counter this
we cropped out the human bounding boxes, placed them in the
center and padded the image, and then input those images to
the model, however the model would only give an animated
output, and we were not able to convert those animations to
individual frames (manually it was possible but could not be
automated) so we decided to move onto another model, which
we implemented in Phase 3.

Fig. 7: Sample output of Human Pose using Hybrik

D. Traffic Light Color Classification and Arrow detection

In this phase, we tried using a pre-trained YOLOv3 model
[6] which was trained specifically to detect and classify traffic
lights. It also detected arrows on the traffic lights. However,
upon using this model we found out that results were not
good, so we decided to move this part to phase 3 since we
were running out of time for phase 2. However, even in phase
3 we could not find a better way to predict the arrows, so we
decided to use the YOLOvV3 model anyways, but we would
have had to modify our code and due to time constraints we
did not end up doing this part, and only did traffic light color
detection.

E. Detecting Other Objects

Other objects like trash cans, traffic cones, road signs were
detected using another object detection model called Detic
by Facebook Research, as these objects were not detected by
YOLOVS. A sample output of a frame with trash cans is shown
in Figure 9.

Fig. 8: Object detection done by DETIC



Fig. 9: Render of scene with trash cans detected using Detic

This model had a significantly larger set of labels that it
could predict, so we completely shifted from YOLOvVS to Detic
in Phase 3, for the vehicles, signs, and everything else. The
one thing we did not implement as expected was the speed
limit sign, in which we were expected to display the detected
speeds as well. We eventually did find a model (8] that did
this, but that model was not trained on a very large dataset,
and it would have taken too much time to incorporate it into
our existing code so we ended up only detecting the speed
limit signs using Detic and not the speeds.

III. PHASE 3

A. Classification shift to Detic and Depth shift to Marigold

We decided to shift all object detections to Detic. It is able
to not only able to classify the same objects as YOLOVS, but
also classify cars into sedans and SUVs as well.

However, the pretrained model we got was trained on the
objects365 dataset, and was not as good as the one trained on
the KITTI dataset, which took a lot of time to generate results.
In the light of subpar human detection results by Detic, we
decided to use Yolov8 for the same.

Furthermore, we shifted our depth estimation model from
ZoeDepth to Marigold [9] as Marigold’s scale estimation was
not changing drastically from frame to frame. However, using
Marigold did cause our lanes to get curved for some reason
that we are not sure of.

B. Human Pose Detection

For human pose detection we decided to try another model
called MeshNet [10] which provided us with individual .obj
files instead of a whole animation. This worked, and sample
output is shown in Figure 10.

Fig. 10: Sample output of Human Pose using MeshNet

C. Traffic Light Color Classification

For this, we got the bounding boxes from Detic, cropped
them out, divided them into three equal parts (this assumes
that the bounding box is relatively tightly fit and includes
the entire traffic signal), converted the crop into HSV format
and thresholding based on average brightness of each part.
If the top part had the highest average brightness, the light
was assigned the color red, if the middle part had the highest
brightness the color would be yellow, and if the bottom part
had the highest average brightness the color would be green.
Furthermore, we applied another threshold for the light being
off. A sample blender output of traffic light color detection is
shown in Figure 11.

This method assumes that the bounding box for the traffic
light is tightly fit, and encapsulates the entire traffic signal,
otherwise this approach fails. As shown in Figure 12, the
bounding box does not completely cover the traffic signal,
and hence this particular case gave the prediction that the light
was yellow since the middle part of the bounding box is the
brightest. We wanted to make the approach agnostic to color so
that even if car headlights or the sun caused color thresholding
methods to fail, this would still work using overall brightness.

Fig. 11: Traffic light detection blender output

However, this method has its own drawbacks. A better ap-
proach would be to train some deep learning model specifically
for this task with lots of data.



traffic light 0.40
-

Fig. 12: Traffic light detection corner case

D. Taillight and Brake light Detection

The taillights and brake lights were detected using detic as
well, but there was a lot of overlap between their bounding
boxes so we treated them as the same thing, a brake light. The
idea was to use brightness thresholding, where if the overall
brightness of a bounding box was less than a certain value the
light would be considered off. We would have further added
a color threshold to see if it had enough red color as well
because brightness could be caused by other sources as well.
Now if both lights were on, it would be safe to say that the car
was braking, and if one of them was on it most likely meant
that the car indicator was on. However this method did not
take into account the situations where both the indicator and
brakes were on, so the method was not very good. Another
improvement we thought would be to add color thresholding
separately to separate out yellow and red colors. If there was
not a lot of overlap between the yellow and red parts, it
would mean that the yellow was most likely coming from
the indicator and not some external source. However, due to
time constraints we could not implement all of this.

Instead, we came up with an easier but a very naive
approach where we would crop out a car’s bounding box, color
threshold and if it had a certain level of red value, the brakes
would be considered on. We did not implement indicator in
this phase.

E. Stationary and moving Objects

For identifying Stationary and moving Objects, we used
the optical flow concept. Moving cars were colored blue, and
stationary cars were colored green, while for every last frame
the car is pink to denote unknown state. A sample output
is shown in Figure 13. The code we referred to has been
referenced in the Bibliography. The code uses OpenCV’s
calcOptical FlowFarneback function. It takes two consec-
utive frames and a point and determines whether the point
is moving or stationary. However, this method is very naive
and only works well if all the cars are moving in the same

direction and at relatively same speeds as the camera. The
reason for this is that the code calculates the magnitude by
which the particular pixel moves, and if that magnitude is less
than a certain threshold it means that the object is moving
along in the same direction as the camera at similar speeds
for it to have low relative velocity and hence a lower change
in position. However, a key flaw in this approach is to assume
motion of cars in roughly the same direction. If the cars are
moving at angles to the camera or are moving in the opposite
direction to the camera, this approach will definitely fail.

The results using this approach were not good, as it clas-
sified a lot of the moving cars as stationary. Some threshold
tuning on the pixel movement could be done to improve the
results. A better way would be to use RAFT model to get the
optical flow, and calculate the Sampson Distance. Following
that, we could compare the results with a threshold and classify
moving and stationary cars.

Fig. 13: Optical flow: img at t;

Fig. 14: Optical flow: img at t



[5] J. Li, S. Bian, C. Xu, Z. Chen, L. Yang, and C. Lu, “Hybrik-x: Hybrid
analytical-neural inverse kinematics for whole-body mesh recovery,”
2023.

[6] S. R. Rath, “Traffic light detection using yolov3,” https://github.com/
sovit- 123/Traffic- Light- Detection- Using- YOLOvV3, 2023, accessed: [In-
sert current date here].

[71 X. Zhou, R. Girdhar, A. Joulin, P. Krihenbiihl, and I. Misra, “Detecting
twenty-thousand classes using image-level supervision,” 2022.

[8] M. Gallacher, “speed-limit-sign-detection: ~Automated annotator
for images with stop signs,” https://github.com/michaelgallacher/
speed-limit-sign-detection, 2023.

[9] B. Ke, A. Obukhov, S. Huang, N. Metzger, R. C. Daudt, and
K. Schindler, “Repurposing diffusion-based image generators for monoc-
ular depth estimation,” 2024.

[10] G. Moon and K. M. Lee, “I2l-meshnet: Image-to-lixel prediction net-
work for accurate 3d human pose and mesh estimation from a single
rgb image,” 2020.

[11] S. O. contributors, “What is output from opencv’s dense optical
flow farneback function & how can this be visualised?” 2016,
available online at: |https://stackoverflow.com/questions/38131822/

Fig. 15: Optical flow map using OpenCV’s inbuilt function what-is-output-from-opencvs-dense-optical- flow- farneback- function-how-can-th!

Fig. 16: Render showing stationary and moving objects (Green
is stationary)

IV. IMPLEMENTATION NOTES

Implementation of the models with their dependencies was
a challenging task. Due to inaccuracies in detection of humans
by YOLOVS, meshing by the Meshgrid Model was not up to
the mark, resulting in inaccurate human pose representation in
the renders.

Blender had a few major errors. The object files of some
vehicles, like the truck was fixated on a particular orienta-
tion (facing backwards). After repeated attempts to change
the orientation of the truck using the Blender UI manually,
we were unable to do so. Similarly, human object models
spawned half underground, and we were unable to change the
translation manually. The same object files when run on our
peers’ machine worked well.

REFERENCES

[1] D. Reis, J. Kupec, J. Hong, and A. Daoudi, “Real-time flying object
detection with yolov8,” 2023.

[2] S.R. Rath, “Lane detection using mask rcnn - an instance segmentation
approach,” https://debuggercafe.com/lane-detection-using-mask-rcnn/,
Aug 2023.

[3] S. F. Bhat, R. Birkl, D. Wofk, P. Wonka, and M. Miiller, “Zoedepth:
Zero-shot transfer by combining relative and metric depth,” 2023.

[4] ruhyadi, “Yolo 3d object detection for autonomous driving vehicle,”
2024. [Online]. Available: https://github.com/ruhyadi/YOLO3D


https://debuggercafe.com/lane-detection-using-mask-rcnn/
https://github.com/ruhyadi/YOLO3D
https://github.com/sovit-123/Traffic-Light-Detection-Using-YOLOv3
https://github.com/sovit-123/Traffic-Light-Detection-Using-YOLOv3
https://github.com/michaelgallacher/speed-limit-sign-detection
https://github.com/michaelgallacher/speed-limit-sign-detection
https://stackoverflow.com/questions/38131822/what-is-output-from-opencvs-dense-optical-flow-farneback-function-how-can-th
https://stackoverflow.com/questions/38131822/what-is-output-from-opencvs-dense-optical-flow-farneback-function-how-can-th

	Phase 1
	Overview of pipeline
	Object Detection
	Lane Detection
	Depth Estimation
	Blender

	Phase 2
	Vehicle Classification
	Vehicle Orientation Estimation
	Human Pose Detection (Pedestrians)
	Traffic Light Color Classification and Arrow detection
	Detecting Other Objects

	Phase 3
	Classification shift to Detic and Depth shift to Marigold
	Human Pose Detection
	Traffic Light Color Classification
	Taillight and Brake light Detection
	Stationary and moving Objects

	Implementation Notes
	References

