
RBE 549: Project3 - Einstein Vision
(Using 2 late day)

Smit M Shah
Email: smshah1@wpi.edu

Worcester Polytechnic Institute

Rigved Sanku
Email: rsanku@wpi.edu

Worcester Polytechnic Institute

Abstract—In this project, we built a simple yet effective visual
system for self-driving cars, inspired by Tesla’s dashboard.
We used a mix of new and classic methods from computer
vision to solve common challenges in autonomous driving. Our
approach focused on achieving a clear, intuitive representation
of the vehicle’s surroundings using Blender, ensuring both safety
and ease of understanding for human operators. Through this
integration, we aimed to enhance the interaction between humans
and autonomous driving systems, providing a reliable and user-
friendly interface.

I. INTRODUCTION

In the realm of technology, particularly when it involves
human-machine interaction, the power of effective visualiza-
tion cannot be overstated. Good visualizations are not just
about presenting data or information; they are about translating
complex processes into intuitive insights. This is especially
critical in the context of autonomous systems, where humans
must rely on and interpret the decisions made by machines.

Tesla’s latest dashboard visualization exemplifies how so-
phisticated, well-designed visual interfaces can significantly
enhance HRI. By offering detailed and intuitive insights into
the vehicle’s perception and decision-making, it sets a bench-
mark for what effective visualization in autonomous driving
should entail.

This project is motivated by the need for advanced visual-
ization tools that not only address the technical requirements
of autonomous vehicles but also prioritize the user experience.
By integrating state-of-the-art deep learning and classical com-
puter vision techniques, we developed a visualization system
that bridges the gap between human intuition and autonomous
machine logic, thereby enhancing user trust in autonomous
vehicles.

A. Dataset Overview

The dataset comprises:
• A collection of 13 video sequences captured under diverse

environmental settings. Each sequence is available in both
its original format (raw) and a version corrected for lens
distortion. (undistorted)

• A set of calibration videos intended for camera calibration
purposes.

• A variety of 3D models (Blender Assets) including var-
ious vehicle types (Sedans, SUVs, Pickup Trucks, Bicy-
cles, Motorcycles, and Trucks), as well as road infrastruc-
ture elements (Traffic Signals, Stop Signs, Traffic Cones,

Traffic Poles, Speed Signs) and a model representing
pedestrians. Additionally, texture files for the stop sign
and a template for the speed sign are provided.

B. Model Pipeline

• Frame Sampling: Our process begins with the selective
sampling of video data, where we extract every 10th
frame from the given videos. This step ensures we work
with a simplified dataset that retains essential temporal
information while being computationally manageable.
Figure 1 shows the Depth generated from unidep along-
side the Original Image

• Depth Estimation: We utilize the UniDepth [1] model,
renowned for its depth estimation capabilities, to analyze
each chosen frame. This model provides depth informa-
tion for every pixel, giving information about the relative
positions of objects. Figure 2 shows the depth map of
generated from Unidepth.

Fig. 1. Depth Estimation using Unidepth

• Object Detection and Classification: Our pipeline inte-
grates a mix of pre-trained models, supplemented by re-
trained versions when necessary, to identify a wide range
of elements within the frames. This includes detecting
various vehicle types, pedestrians, and key urban infras-
tructure such as traffic lights and road signs. Additionally,
it encompasses the identification of common roadside
objects like dustbins and safety cones, which are integral
to navigating complex urban environments.

• Data Representation: The detection phase yields clas-
sifications and the centroids of the bounding boxes en-
compassing the identified objects. We compile this infor-
mation into a structured JSON file, serving as a detailed
record of the detected elements within each frame.



• Scene Reconstruction: Using the pin-hole camera model
and the calibration matrix details, we employ Python
scripting within Blender to meticulously reconstruct the
scene depicted in each frame. This involves initiating each
frame’s reconstruction from scratch, thereby ensuring the
accuracy and freshness of the scene representation. The
reconstructed scenes incorporate the camera’s perspec-
tive, offering a realistic and immersive visualization of
the vehicle’s environment.

• Rendering: For each scene we reconstruct in Blender,
we render a set of images that correspond to a video
sequence. To compile these images into a continuous
video, suitable for submission, we utilize online tools
that stitch together the individual frames, creating a
smooth animation.

Figure 2 shows the flow of the overall model pipeline

II. CHECKPOINT I

A. Lane Detection

In addressing the task of identifying various types of
lanes—dashed, solid, and of different colors—on the road, we
initially experimented with ClrNet [2]. However, we noticed
that ClrNet predominantly excels in detecting mostly straight
lanes, such as those found on highways or freeways, but falls
short in recognizing the diversity of lane types.

Later, experiments were done using Mask RCNN [3], which
proved to be better for lane detection. It was chosen due to its
ability to detect and segment objects in an image with high
precision and accuracy. It was able to identify and segment
lanes in a variety of driving environments, including highways,
urban streets, and rural roads.

Mask RCNN is able to perform the necessary instance
segmentation, and is able to detect

• Divider-Line
• Dotted-Line
• Double-Line
• Random-Line
• Road-Sign-Line
• Solid-Line

Figure 3 shows an example output of the different types of
lanes detected using Mask R-CNN.

To transform the 2D lane detections from Mask-RCNN into
a 3D metric space, we employed a two-step assumption-based
approach. Initially, we posited that the camera’s position in
the world frame is fixed at (0, 0, 1.2) meters. Our second
hypothesis was that all lanes lie flat with no elevation, effec-
tively having a height of zero. These assumptions allowed us
to project the detected 2D lane pixels into 3D coordinates,
setting the z-coordinate to 0 meters to reflect the lanes’ flat
nature. Following the successful mapping to 3D space, we
applied a cubic bezier curve fitting to accurately model the
lanes’ shapes. The points used to fit the curve we used the
first, the last and the middle 2 points of the segmented mask,

enhancing the precision of our lane representation in the 3D
space.

Figure 15 shows an example output of a set lanes fitted with
bezier curves.

Fig. 3. Lane instance segmentation using Mask- RCNN

B. Vehicles, Pedestrian, Traffic Light, Road Signs

1) Vehicles:: For vehicle detection we used Yolo V8. We
extract the centroid wrt the image frame of bounding boxes
of the detected vehicles and then project these 2D Points to
3D points using the concept of similarity triangles, to spawn
the corresponding vehicle in Blender.

2) Traffic Lights, Pedestrains and Road Signs: For Traffic
Lights we use Detic [4]. Detic is cable to identify traffic signals
as red, yellow, or green by adjusting the detection’s confidence
threshold levels. Additionally, it can recognize stop signs and
pedestrians, providing a mask, bounding box, and a confidence
score for each detection. Figure 4 shows the detection of all
possible traffic lights at a junction road in the Night scene.

Fig. 4. Traffic Light Detection in Night Scene using Detic



Fig. 2. Model Pipeline

III. CHECKPOINT II

A. Vehicles:

After working with 2D vehicle detection using YOLO in
our first checkpoint, we decided to move towards 3D bounding
boxes, or 3D Pose Estimation for vehicles (yaw, pitch, role).
Mostly, we were interested in the yaw of the vehicles since
roll or pitch changes are pretty rare.

We found a workable Github [5] that implements this 3D
pose estimation paper [6]. This framework contains two net-
works. One for 2d bounding box detection. One for dimension
and orientation estimation. With this information, the 3D pose
and 3D bounding box can be estimated. We then tried using
this YOLO3D to get the image coordinates and the yaw
value. Initially, our plan was to combine 2D and 3D object
detection – using Yolo v8 for 2D detection for pinpointing
and classifying vehicles and YOLO3D for the yaw. But we
ran into issues syncing up detections between the two models.
In crowded scenes with many vehicles, matching the 2D and
3D detections proved to be particularly tricky. The inaccuracies
in the 3D bounding boxes, as shown in the figure, might be
because YOLO3D was trained with stereo camera data but
tested on monocular images, which could cause discrepancies.
It’s also possible that the model wasn’t fully adapted to handle
new, unseen data.

Despite these hurdles, we stuck with 3D pose estimation,
valuing the vehicle’s orientation over its exact position. After
all, we figured we could adjust the position by scaling and
shifting within the environment, especially since we don’t

have a consistent metric scale to work with. As shown in
the figure, this allowed us to place vehicles in their true
orientations, enhancing the realism of our visualizations.

Possible Modifications:
1) Adjustment of Projection Matrix: An observed

anomaly is the upward tilt of the estimated 3D bounding
boxes, as opposed to a desired orientation parallel to
the ground. A future adjustment might involve replacing
the current projection matrix with the camera’s intrinsic
matrix to rectify the bounding boxes’ alignment.

2) Enhancing Bounding Box Precision: The 3D bounding
box accuracy is impacted by the presupposition that 2D
bounding boxes closely envelop the object. The often-
imprecise 2D bounding boxes suggest a potential up-
grade from YOLOv3 (which the GitHub implementation
uses) to YOLOv7 for 2D detection could improve the
fit and, thus, the 3D estimations.

B. Traffic Lights:

In order to classify the arrows in the arrows in the traffic
lights, we tried to color threshold the traffic lights and then get
the corresponding contours, of the displayed shape (arrow).
Due to different lighting conditions in different frames, the
classical approach did not give good results.

We then implemented a working GitHub repo [7] which uses
Yolo v3 trained on LISA Traffic Light Dataset for classifying
arrows on the traffic lights.



C. Objects and Road Signs:

Additional objects like dustbin, traffic poles, traffic cones
were detected using Detic and their respective 3D models
were rendered in Blender.

The road signs which are the arrow heads on the road is
detected by Mask-RCNN. Figure 5 illustrates the same.

Fig. 5. Detection of road arrows using Mask RCNN

D. Pedestrian Pose:

For the task of identifying 3D pedestrian pose in the key
frames, we implemented OSX [8] which gives us the 3D Mesh
of the entire body. It processes both RGB images for human
detection and corresponding depth maps to estimate the real-
world position of each detected human. It uses a combination
of off-the-shelf object detection (YOLOv5) and custom pose
estimation to generate 3D meshes of humans in the scenes.
Then 3D meshes are adjusted based on real-world coordinates
derived from the depth maps, allowing for accurate placement
in a 3D environment. Rendered images and .obj files for
each detected human provide both a visual verification and
a reusable 3D model for further applications. Figure 6 and 7
shows the detected 3D mesh of the person.

Fig. 6. 3D Mesh generation of pedestrian

Fig. 7. 3D Mesh generation of pedestrian

IV. CHECKPOINT III

A. Breaking Lights and Indicators of other vehicles

To detect brake lights, the following algorithm is employed,
leveraging Detic’s masking capabilities :

1) Extract braking lights from the image using masks
and bounding box generated by Detic (although the
confidence values of these boxes are really low -around
20%)

2) Find the 3D world points of these boxes using calibration
matrix and depth map.

3) See which car’s position are these 3D points (of the
brake lights) using simple distance formulae.

4) Assign that car’s braking state in blender as True.
5) Same goes for indicator lights
Figure 8 shows the detection of safety cones and braking

lights

Fig. 8. Detection of Safety cones and braking light using Detic

B. Parked and Moving Vehicles:

To distinguish between parked and moving vehicles, we
had to find optical flow of between consecutive key frames.
Optical flow represents the motion of objects between two
frames, often visualized as a field of arrows or a color-coded



image where the color and intensity indicate the direction
and magnitude of motion, respectively. In order to that we
implemented RAFT [9].

We get 2 channels (u, v) for for each pixel value, we
calculate the magnitude and the directions of the resultant
vector from its u, v giving. And based on threshold filtering,
will decide which vehicles are moving and which are parked.
Figure 9 and 10 illustrates the optical flow depth calculated
using RAFT.

Fig. 9. Image (left) and Optical Flow(right)

Fig. 10. Image (left) and Optical Flow(right)

Fig. 11. Detection of Safety cones and braking light using Detic

REFERENCES

[1] Luigi Piccinelli, Yung-Hsu Yang, Christos Sakaridis, Mattia Segu, Siyuan
Li, Luc Van Gool, and Fisher Yu. Unidepth: Universal monocular metric
depth estimation, 2024.

[2] Tu Zheng, Yifei Huang, Yang Liu, Wenjian Tang, Zheng Yang, Deng
Cai, and Xiaofei He. Clrnet: Cross layer refinement network for lane
detection, 2022.

[3] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask
r-cnn, 2018.

[4] Xingyi Zhou, Rohit Girdhar, Armand Joulin, Philipp Krähenbühl, and
Ishan Misra. Detecting twenty-thousand classes using image-level super-
vision, 2022.

[5] S. Khadem. 3D Bounding Box Estimation Using Deep Learning and
Geometry. https://github.com/skhadem/3D-BoundingBox. Accessed:
2023-09-30.

[6] Arsalan Mousavian, Dragomir Anguelov, John Flynn, and Jana Kosecka.
3d bounding box estimation using deep learning and geometry, 2017.

[7] S. Khadem. 3D Bounding Box Estimation Using Deep
Learning and Geometry. https://github.com/sovit-123/
Traffic-Light-Detection-Using-YOLOv3. Accessed: 2023-09-30.

[8] Jing Lin, Ailing Zeng, Haoqian Wang, Lei Zhang, and Yu Li. One-stage
3d whole-body mesh recovery with component aware transformer, 2023.

[9] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for
optical flow, 2020.

https://github.com/skhadem/3D-BoundingBox
https://github.com/sovit-123/Traffic-Light-Detection-Using-YOLOv3
https://github.com/sovit-123/Traffic-Light-Detection-Using-YOLOv3


Fig. 12. Traffic Light Detection in Night Scene using Detic

Fig. 13. Rendered image with cones and traffic lights



Fig. 14. Rendered image with stop light

Fig. 15. Detection of parked cycle


	Introduction
	Dataset Overview
	Model Pipeline

	Checkpoint I
	Lane Detection
	Vehicles, Pedestrian, Traffic Light, Road Signs
	Vehicles:
	Traffic Lights, Pedestrains and Road Signs


	Checkpoint II
	Vehicles:
	Traffic Lights:
	Objects and Road Signs:
	Pedestrian Pose:

	Checkpoint III
	Breaking Lights and Indicators of other vehicles
	Parked and Moving Vehicles:

	References

