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Abstract—(utilizing 1 late day) This project focuses on enhanc-
ing Human-Robot Interaction (HRI) through improved visual-
ization techniques, inspired by Tesla’s dashboard technology. By
processing videos from a 2023 Tesla Model S, we aim to create an
intuitive visualization interface that displays both the vehicle’s
immediate view and its surroundings. This interface will offer
users insights into the vehicle’s perception and decision-making
processes, improving user experience and trust in autonomous
vehicles.

I. INTRODUCTION

The importance of visualizations in technology, particularly
for autonomous machines, cannot be overstated. The first inter-
action between a human and a machine is crucial for building
trust. As smartphone UIs have evolved to become more user-
friendly, so must the interfaces of autonomous vehicles and
robotics. Visualization tools like rviz have been essential
for developing robotic systems by graphically representing
sensory data. However, they often fail to effectively address
Human-Robot Interaction (HRI) for the average user, focusing
too much on technical details.

Tesla’s recent dashboard designs have marked a significant
step forward by offering intuitive and informative visualiza-
tions, enhancing the communication between humans and
machines. Yet, there is still room for improvement in making
these visualizations more accessible to all users. This project
aims to advance Tesla’s innovations by creating a visualization
interface that not only displays the car’s immediate view but
also provides a comprehensive overview of its environment.
This approach seeks to improve user understanding of how
the vehicle interacts with its surroundings, addressing key HRI
challenges.

Fig. 1: Tesla’s Dashboard

II. OUTLINE OF THE PAPER

1) Obtaining Depth Maps:
2) Object Detection and Projection in 3D space:
3) Orientation of Vehicles w.r.t. Camera:
4) Lane Detection and Road Signs:
5) Human Pose Detection:
6) Limitations of the Approach:
7) Results:

III. OBTAINING DEPTH MAPS

A pivotal element in constructing an intuitive and infor-
mative visualization for autonomous vehicle systems is the
accurate rendering of the vehicle’s surroundings in three
dimensions. This necessitates a reliable method of obtaining
depth information from the vehicle’s surroundings. To accom-
plish this, we utilized the ZoeDepth repository (https://github.
com/isl-org/ZoeDepth), which offers significant advancements
in depth perception technology.

ZoeDepth is notable for its ability to produce metric depth
maps in a single shot, a substantial improvement over its
predecessor, MiDAS[1], which only provided relative depth
information. This advancement is crucial for our project as
metric depth maps allow for a more accurate and spatially
correct rendering of the environment around the vehicle. The
repository achieves this by building upon the foundational Mi-
DAS technology, integrating additional layers of sophistication
to produce metric depth values.

Fig. 2: Depth Map

https://github.com/isl-org/ZoeDepth
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Despite the advancements ZoeDepth[2] provides, it is im-
portant to acknowledge the inherent inaccuracies in the metric
depth values it generates. These inaccuracies stem from the
complex nature of depth estimation algorithms and the diverse
environments and conditions under which they operate. To
address this challenge, we adopted a strategy of manually
scaling the depth values through a process of trial and error.
This approach was taken to ensure that the depth maps
accurately represent the real-world distances for each specific
sequence of video data, thereby enhancing the fidelity of our
visualizations.

IV. GENERAL APPROACH AND OBJECT DETECTION

For the task of object detection and instance segmentation
within the visual field of the autonomous vehicle, we selected
the Detic[3] repository for its comprehensive capabilities.
Detic distinguishes itself by its ability to perform object de-
tection across more than 21,000 classes, offering unparalleled
versatility for our application.

Our methodology encompassed several key steps:

A. Instance Segmentation

Firstly, we performed instance segmentation on a specific set
of object classes that are relevant to the project’s context, such
as sedans, hatchbacks, trucks, and pickup trucks. This process
was essential for accurately identifying and segmenting each
object within the vehicle’s field of view from the video data.

B. Centroid Calculation

Upon successfully segmenting the objects, the next step
involved calculating the centroid of the segmentation mask
for each detected object instance across all frames. This
calculation was critical for determining the precise location
of each object in the visual space of the video data.

C. Depth Value and 3D Projection

After identifying the centroids of object instances within
the segmentation masks, our next objective was to compute
the average depth value for each segmented object. This
computation is integral to our methodology as it involves
the use of camera intrinsic parameters (such as focal length
and optical center) and the predetermined camera extrinsics,
which include its position and orientation relative to a known
reference frame. For our setup, the camera is posited to be 1.5
meters above the origin in a coordinate system aligned with
that used in Blender, a 3D modeling and rendering software.

1) Depth Calculation: The average depth value for each
object’s segmentation mask is determined by integrating depth
information obtained from the depth maps with the segmented
areas. This depth is not absolute but is scaled based on
empirical adjustments to match the specific sequence of video
data being analyzed, providing a more accurate depiction of
each object’s distance from the camera.

Fig. 3: Centroid and Depth overlay on the original image

2) Projection Equation: To project the 2D centroids of the
objects into 3D space, we utilize the projection equation which
relates 3D world coordinates to 2D image coordinates through
the camera’s intrinsic and extrinsic parameters. The basic form
of the projection equation can be expressed as:
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Where:

• (u, v) are the coordinates of the point in the image plane.
• K represents the camera intrinsic matrix containing focal

lengths and optical center.
• [R|t] denotes the camera extrinsic parameters, with R

being the rotation matrix and t the translation vector,
defining the camera’s orientation and position in the
world.

• (X,Y, Z) are the 3D world coordinates of the point.
• Z is the depth of the point in the world coordinate system,

acting as a scaling factor to ensure the correct projection
into 2D space.



Fig. 4: Original

Fig. 5: After Plotting in Blender

Using the depth values obtained from the depth maps
and the segmentation masks, we can rearrange this equation
to solve for the 3D coordinates (X,Y, Z) of each object’s
centroid. This transformation allows us to accurately place
each object within the 3D space of Blender, based on its
observed position in the 2D image plane.

3) Advantages of Instance Segmentation: Choosing in-
stance segmentation over simpler bounding box detection
offers a significant improvement in accuracy for this projec-
tion process. Instance segmentation precisely delineates the
contours of each object, allowing for a more exact calculation
of centroids and depth values. This method enhances the visual
quality of the rendered environment and provides users with a
more detailed and intuitive understanding of the autonomous
vehicle’s perception and interaction with its surroundings.

V. ORIENTATION OF VEHICLES WITH RESPECT TO
CAMERA

Fig. 6: Orientation Detection

Achieving an accurate representation of vehicles in a 3D
visualization requires precise determination of their orientation
relative to the camera’s perspective. This task is compli-
cated due to the dynamic nature of the scenes captured
in the autonomous vehicle’s cameras. To address this chal-
lenge, we incorporated the 3D Bounding Box repository
(https://github.com/skhadem/3D-BoundingBox), an advanced
tool built on a PyTorch implementation, improving upon the
original YOLO3D methodology. This tool is particularly adept
at providing orientation information for a wide range of
vehicle types, including cars, trucks, pickup trucks, bicycles,
and pedestrians, which are essential for creating a realistic
traffic scene in our visualization. Now that the orientation
convention in the above image is measured such that the
vehicles aligned with our vehicle are 90 degrees and opposite
to us are 270 or -90 degrees. Also note that to smoothen our
simulations we have done binning and divided into quadrants
such that yaw rounds of to the closest axis, i.e 12 degrees will
round off to 0 degrees when spawning in blender.

• The repository excels in calculating the yaw angle of
vehicles, which is essential for positioning them correctly
within the 3D scene. The yaw angle determines the
direction the vehicle is facing relative to the camera,
allowing for a realistic portrayal of traffic conditions and
interactions.

• Despite its effectiveness, the tool has limitations, par-
ticularly in generating false positives for objects at in-
termediate or far distances. This challenge is mitigated
by refining the detection parameters and focusing on
optimizing the accuracy for objects closer to the camera,
where the orientation information is most critical for the
visualization’s realism.

https://github.com/skhadem/3D-BoundingBox


VI. HUMAN POSE DETECTION

The representation of human figures and their poses presents
another layer of complexity in 3D visualizations. To achieve
lifelike human poses, we leveraged the OSX repository[4],
which has shown promising results in human pose estimation.
This tool outperformed other frameworks we tested, including
PyMAF, HybrIK, and NIKI, particularly in scenarios where
the human figures were small or ambiguously presented in
the camera’s view.

• OSX’s integration with Grounded sam for human pose
detection marks a significant advancement in accurately
capturing human postures and movements. This capabil-
ity is vital for adding a dynamic and realistic element
to the human figures within our 3D scenes, ensuring they
interact believably with the environment and the vehicles.

• While the OSX model demonstrates improved accuracy
and a reduction in false positives compared to other
models, it is not without its challenges. The detection
system occasionally misinterprets non-human elements in
the scene as humans, though at a significantly reduced
rate compared to alternatives. Ongoing adjustments and
fine-tuning of the model parameters are conducted to
further minimize these occurrences.

Fig. 7: Human Detection using OSX

VII. LANE DETECTION AND PLOTTING

Lane Segmentation into different categories was done using
https://debuggercafe.com/lane-detection-using-mask-rcnn/.
This model provided us with the mask of different lanes on
the road, after getting the mask we fitted a curve in each blob
to get the lane. for extracting the road same procedure was
used. The above model provides a different label for the road
marks.

Earlier we also tried the CLRnet model to extract the lane
however it cannot classify between the different types of lanes
and cannot identify the road, therefore we switched to this
model.

Fig. 8: Different types of lanes

Fig. 9: Road Marks

https://debuggercafe.com/lane-detection-using-mask-rcnn/


VIII. DISTINCTION BETWEEN PARKED AND MOVING
VEHICLES

Fig. 10: orientation with arrows

IX. RESULTS

Fig. 11: result1

Fig. 12: result2

Fig. 13: result3
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