
RBE/CS 549 Computer Vision
Project 3

Einstein Vision
Puneet Shetty
MS in Robotics

Worcester Polytechnic Institute
Email: ppshetty@wpi.edu

Edwin Clement
MS in Robotics

Worcester Polytechnic Institute
Email: eclement@wpi.edu

Abstract—Using camera data from Tesla automobiles, this
project creates immersive environments by detecting objects
such as cars, pedestrians, traffic lights, traffic signs, road
signs, and car poses. The objective is to smoothly include
these detections into movies that are created with Blender,
offering an accurate portrayal of actual situations. Accurate
identification and precise scene reconstruction are made possible
by sophisticated computer vision algorithms, which also make
it possible to create high-fidelity movies that are necessary for a
variety of applications, including traffic simulation settings and
autonomous driving research.

Index Terms— YOLO, Detic, Optical Flow, Human pose esti-
mation, Traffic sign, Traffic signal, Mask RCNN

I. PIPELINE OVERVIEW

In order to obtain intrinsic parameters and adjust the raw
camera output for distortion correction, our pipeline started
with the camera’s calibration. We then used the corrected
footage to apply sub-sampling, at a rate of 10fps. These crucial
frames were taken out of every driving clip and fed into the
models that were used to render the semantics of the scene.
After that, we used a Marigold depth estimation network to
extract the necessary feature’s 3D world coordinates from the
network models. After that, frame by frame, the features were
placed at their assigned coordinates, and Blender was used to
generate the video.

II. FEATURE EXTRACTION USING PRE-TRAINED MODELS

A. Lane & Ground Sign Detection

Using a mask RCNN model, we were able to precisely
extract road sign outlines and lane lines from every frame in
our method. Detecting and segmenting lanes is a difficult task
because of the nature of the objects that need to be handled.
For example, lane lines are generally thin objects that are
located at significant distances inside the image. However, we
are still dedicated to enhancing the performance of our model
in order to obtain the most precise lane recognition results via
instance segmentation. In our quest for optimization, we made
use of the state-of-the-art Mask RCNN ResNet50 FPN V2,
which has excellent pretrained weights. This improved model

Fig. 1. Lane Detection

improves our performance metrics and strengthens our seg-
mentation capabilities. With a mask mean Average Precision
(mAP) of 41.8% and a box mAP of 47.4%, we are equipped
with a robust framework poised to deliver exceptional results
in lane detection using the pre-trained model. The classes
detected by this network were:

• Dashed line
• Solid White lines
• Double yellow lines
• Road Sign lines

To assist the mapping procedure, we made two important
assumptions in order to translate the 2D lane detection outputs
from our network into a 3D metric space. We assumed that all
lanes had zero height, which simplified the model. By making
use of these presumptions, we were able to provide a fixed
z-coordinate of 0 meters to each predicted lane pixel, giving
it an exact 3D position in metric units. After obtaining the
3D positions of every lane, the last step we took was to use
cubic bezier curve fitting to draw the lanes. The control points



Fig. 2. Ground Sign

obtained from this fitting procedure were very helpful inputs
to the Blender framework’s lane geometry node.

Using the mask produced by our dedicated ground sign
identification network, we implemented a painstaking contour
extraction process in our ground sign handling methodology.
Through the process of separating the non-zero components of
this mask, we were able to accurately draw the outlines of the
ground signs and maintain their originality. We then used these
contours to easily import the extracted shapes into Blender,
which improved the precision and realism of our produced
scenes. We used the same mapping procedure we had used
for the lane lines

However, the model’s usage of heavier RPN, box, and mask
heads is a drawback. As a result, the model operates more
slowly than in its prior iteration.

B. Traffic Light Detection

We discovered a traffic light identification model that used
the YOLOv3 framework and the LISA traffic light dataset
for training. With this model, we can immediately identify
the color and arrow of traffic lights. Incorporating the iden-
tified traffic lights into Blender involved a multi-step process
aimed at seamless integration. Initially, we leveraged the depth
estimation results to derive precise 3D coordinates for each
detected feature. Subsequently, utilizing this spatial informa-
tion, we meticulously crafted separate color elements within
Blender to accurately represent the detected traffic signals. By
aligning these color elements with the corresponding elements
of the traffic signal model, we ensured faithful portrayal
of the detections made by our network within the rendered
scenes. This integration methodology not only enhances the
visual realism of our simulations but also underscores the
effectiveness of our traffic light identification system within
a 3D environment.

Fig. 3. Traffic Lights

Fig. 4. Marigold Depth

C. Depth Estimation

The Marigold network, a state-of-the-art diffusion model
with an advanced fine-tuning strategy designed specifically
for monocular depth estimation applications, drove our depth
estimate. Fundamentally, Marigold makes use of the abun-
dance of visual information included in modern generative
image models. Based on Stable Diffusion and optimized with
synthetic data, the model has exceptional flexibility, able to au-
tomatically adjust to new data via zero-shot transfer learning.
This special capacity guarantees the delivery of cutting-edge
monocular depth estimation outcomes. We prepared ourselves
with rich spatial information essential for our 2D-to-3D point
conversion process—a core component integrated across all
aspects of our project—by extracting depth values for each
pixel in the range of 0 to 255 from every frame.

D. Traffic Sign Detection

Our approach to traffic sign detection relied on the robust
capabilities of the YOLOv8 pre-trained model, renowned for
its nuanced discernment among various classes of traffic signs.
With a comprehensive classification spectrum encompassing
stop signs, speed limit indicators ranging from 35 to 60,



Fig. 5. Initial Blender Detections

Fig. 6. Traffic Sign

pedestrian crossing symbols, lane merge warnings, and alerts
for upcoming speed bumps, the model provided a versatile
solution for real-time traffic sign identification. Upon de-
tection, the model generated masks delineating the precise
locations of these signs within the image. These masks were
then meticulously processed, extracting the pertinent sign
details and converting them into accurate 3D coordinates. This
conversion facilitated the seamless integration of the detected
traffic signs into our Blender environment, enriching the visual
fidelity and functional realism of our simulated world.

Fig. 7. Stop Sign

Fig. 8. Car Detections

Fig. 9. Garbage Can Detections

E. Identification of cars, garbage cans, traffic cones

We were able to identify a wide range of classes us-
ing Meta’s Detic model, in addition to traffic signs. These
classes included things like garbage cans, traffic cones, fire
hydrants, and different kinds of vehicles, like trucks, pickup
trucks, SUVs, sedans, hatchbacks, motorcycles, and bicycles.
One of Detic’s unique features is its capacity to identify
any class using the class names that are supplied, utilizing
CLIP technology to improve accuracy. Detic has demonstrated
remarkable cross-dataset generalization abilities, showcasing
its detection prowess on datasets such as OpenImages and
Objects365 without the need for fine-tuning. It was trained
on the ImageNet-21K dataset, which contains a wide variety
of 21,000 classes. Because of its cutting-edge performance
on both the open-vocabulary LVIS and COCO datasets, it
can be used as a flexible solution for a variety of detection
applications, including ones that need DETR-style detectors.
We were able to classify these objects with ease by providing
Detic with a bespoke vocabulary that was particular to the
classes of interest. We then used the bounding box outputs to
make it easier to apply each class in subsequent projects. This
all-encompassing strategy not only expedited the classification
procedure but also established a strong framework for future
project advancements and improvements.



Fig. 10. Traffic Cones

Fig. 11. Vehicle Pose

F. 3D Vehicle Pose Estimation

We used Detic to do vehicle detection duties, as was
previously mentioned in the section on vehicle identification
of the first checkpoint of our project. Detic’s powerful features
went beyond simple identification and allowed cars to be
divided into several groups. Its extensive training routine on
numerous datasets, each painstakingly annotated to cover a
broad range of vehicle types and classifications, produced this
capabilities. By utilizing the extensive knowledge present in
these datasets, Detic was able to differentiate between a wide
range of vehicle classifications and provide a level of accuracy
and granularity in vehicle identification that was previously
unmatched.

We discovered a functional GitHub repository that effec-
tively implements the methodology proposed in a 3D pose
estimation paper. This comprehensive framework comprises
two distinct networks, each serving a specific purpose. The

first network focuses on 2D bounding box detection, accurately
identifying the spatial boundaries of objects within an image.
Meanwhile, the second network specializes in dimension and
orientation estimation, providing crucial information necessary
for inferring the 3D pose and bounding box dimensions. By
integrating the outputs from both networks, the framework
enables precise estimation of 3D poses and bounding boxes,
enhancing the overall depth and accuracy of object detection
in three-dimensional space.
We improved our implementation’s capabilities to achieve
precise 3D bounding box estimation. First, by swapping out
the projection matrix for our camera’s intrinsic matrix and
guaranteeing ground plane alignment, we fixed the bounding
box tilt problem. Second, we estimated the real-world dimen-
sions of the objects to extend 3D pose estimation capabilities
to untrained objects, allowing the model to successfully infer
their poses. Together, these changes optimize performance and
address issues for reliable 3D object detection and posture
estimation.
Even with our changes, there are still issues. Due to the large
amount of data in the KITTI dataset, orientation estimations
for vehicles are still reliable, but for other objects—like
trucks—especially those with fewer instances available for
training, the dependability is lower. Larger datasets may be
required in order to solve this problem and enhance model
performance. Challenges also arise from the method’s funda-
mental assumptions, like uniform stance within object cate-
gories. Inaccuracies in depth estimation can result from mis-
classifications and variations in object size, particularly when
objects are obscured. These problems might be addressed
by subclassifying cars and improving classification accuracy,
which would provide more precise approximations for a range
of item sizes and kinds. Nonetheless, difficulties continue to
arise when objects are obscured, jeopardizing estimates of both
dimensions and orientation.

G. Pedestrian Pose Estimation

To precisely estimate pedestrian positions within our frames,
we utilized the One-Stage 3D Whole-Body Mesh Recovery
with Component Aware Transformer (OSX). We were able to
extract the intricate meshes of every pedestrian in the picture
thanks to our sophisticated framework. By using these models,
we were able to obtain all of the 2D coordinates of pedestrians,
accounting for situations in which the centroid might not
line up with the center because of things like people riding
motorcycles. We used YOLOv3 to apply a voting mechanism
to the mesh coordinates in order to find the centroid. We then
used the centroid that we had located to extract the exact
3D coordinates of the pedestrians and project their meshes
onto the appropriate spots in the scene. This all-encompassing
method ensured the authenticity of our scene reconstructions
by enabling precise pedestrian location and portrayal.

H. Brake lights & Turning Signals

In our process of detecting car taillights, we utilize the
Detic model to identify these crucial components. Once the



Fig. 12. Pedestrian Pose

Fig. 13. Turning Signal

bounding boxes of the taillights are obtained, we perform
color space conversion from BGR to YCrCb. Subsequently, we
apply erosion using a 5x5 kernel to enhance the clarity of the
image. Employing adaptive thresholding on the transformed
image, we retain only those pixels whose luminance surpasses
a specified threshold value. We then assess the pixel count
in the resultant image, with a threshold of 220 serving as a
criterion. If the pixel count exceeds this threshold, we classify
the taillight as ”on”.

For each frame, we retrieve the bounding boxes of all cars
and identify centroid points for the two detected taillights
within each car bounding box, establishing them as pairs.
Employing a series of conditional checks, we determine
the signaling behavior of the vehicle. Specifically, if the
right taillight is classified as ”on” while the left is ”off”,
the car is interpreted as indicating a right turn, and vice
versa. Conversely, if both taillights are ”on”, the vehicle is
considered to be braking, while both being ”off” suggests the
absence of braking signals.

This methodology not only facilitates precise taillight detec-

tion but also enables accurate inference of vehicle signaling
behavior, enhancing the overall effectiveness of our system in
understanding and interpreting traffic dynamics. However, the
model seems to not be generalisable between night and day
scenes since the color of the taillights in night scenes is not
washed out by the sunlight

I. Classification between Still & Moving Cars

The methodology of the study combines optical flow anal-
ysis to distinguish between moving and stationary autos in a
scene. For this objective, traditional techniques such as putting
a threshold on the Sampson distance were insufficient. As
a result, a completely new approach was developed: using
Gaussian masking along the flow field’s horizontal axis. By
taking use of the spatial properties of flow vectors, this
novel method reveals that flow subtraction is generally more
pronounced along the borders and less pronounced in the
center. Interestingly, the variance of the Sampson distance or
flow magnitude directly affects the variance of this Gaussian
distribution. This improved process makes it possible to iden-
tify parked cars by using the unique flow patterns that are
present in the scene, which improves the analysis’s accuracy
and dependability.

III. CONCLUSION

To sum up, our project is a thorough undertaking meant
to progress the domain of scene interpretation and computer
vision for traffic control applications. By combining cutting-
edge models and techniques, we have created a strong frame-
work that can recognize and comprehend a wide range of
objects in urban settings, such as lane markings, traffic signs,
pedestrian positions, and car actions. Utilizing state-of-the-
art methods including object detection, signal interpretation,
and 3D position estimation, we have accomplished impressive
results in traffic analysis and scene reconstruction. Although
we faced obstacles and constraints in the process, our work
demonstrates how cutting-edge computer vision techniques
might improve traffic efficiency, road safety, and urban mo-
bility. Further development and improvement of our system
may eventually lead to even more sophisticated and impactful
solutions in the realm of intelligent transportation systems.

REFERENCES

[1] Jing Lin, Ailing Zeng, Haoqian Wang, Lei Zhang, and Yu Li, ”One-Stage
3D Whole-Body Mesh Recovery with Component Aware Transformer,”
arXiv:2303.16160 [cs.CV], 2023.

[2] Zachary Teed and Jia Deng, ”RAFT: Recurrent All-Pairs Field Transforms
for Optical Flow,” in European Conference on Computer Vision (ECCV),
2020, pp. 296-313.

[3] Arsalan Mousavian, Dragomir Anguelov, John Flynn, and Jana Kosecka,
”3D Bounding Box Estimation Using Deep Learning and Geometry,”
arXiv:1612.00496 [cs.CV], 2017.

[4] Xingyi Zhou, Rohit Girdhar, Armand Joulin, Philipp Krähenbühl, and
Ishan Misra, ”Detecting Twenty-thousand Classes using Image-level Su-
pervision,” arXiv:2201.02605 [cs.CV], 2022.

[5] Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Metzger, Rodrigo
Caye Daudt, and Konrad Schindler, ”Repurposing Diffusion-Based Image
Generators for Monocular Depth Estimation,” arXiv:2312.02145 [cs.CV],
2024.

[6] Debugger Cafe, ”Lane Detection using Mask R-CNN,” https://
debuggercafe.com/lane-detection-using-mask-rcnn/.



Fig. 14. Optical Flow

[7] Sovit Ranjan Rath, ”Traffic Light Detection Using YOLOv3,”
GitHub repository, 2024. [Online]. Available: https://github.com/sovit-123/
Traffic-Light-Detection-Using-YOLOv3.


