
RBE 549 Project 3: Einstein Vision

Amrit Krishna Dayanand, Venkata Sai Krishna Bodda
MS Robotics Engineering

WPI
Email: adayanand@wpi.edu, vbodda@wpi.edu

using 1 late day for phase 3

I. INTRODUCTION

Perceiving the environment around a vehicle is crucial for
autonomous navigation planning. Autonomous vehicles use
various sensors like a monocular camera, inertial measurement
unit (IMU), light detection and ranging (LIDAR), or radar to
achieve this. Tesla recently pivoted its strategy to fully rely
on an array of monocular cameras and deep-learning-based
computer vision algorithms for scene estimation. In this
project, we use the camera feed from the front camera of a
Tesla Model S and estimate the scene around the car in 3D,
using Blender. This is broken down into three subtasks. First,
we want to estimate the spatiotemporal states of objects, then
visually distinguish different classes of objects and finally
display information in an aesthetically pleasing way.

In particular, we are interested in the following objects, and
states.

1) Vehicles
a) classified as sedan, SUV, truck, bicycle, etc.
b) oriented in space
c) with brake lights and turn signals
d) distinguished as parked or moving, where moving

vehicles have moving direction displayed
2) Road signs

a) stop signs
b) traffic lights with colors and arrows
c) lanes of different styles (dashed, solid), with color
d) arrows on the ground
e) speed signs

3) Pedestrian pose
4) Road objects like trash cans, cones, poles, etc.
5) Optional

a) Speed bumps
b) Collision prediction with road objects, including

cars, pedestrians

II. PROPOSED APPROACH

Our approach uses classical and deep learning approaches
to infer the states of objects in the scene. First, we estimate
the locations and classes of objects in space by combining
information from object detection and relative depth
estimation, using a deep-learning approach. We find lower-
level states like the color of lights by cropping regions of
interest and applying an HSV segmentation and thresholding

approach. To estimate human poses, we use Meta PIFuHD to
go from crops of pedestrians to the 3D pose. We identified
lanes using CLRerNet and using control points with bezier
curves in Blender.

A. Pixel to world coordinates

To convert coordinates from image coordinates to world
coordinates, we use the projection equation and relative depth.
This is done by emitting a ray from each pixel and picking
a value along the ray scaled by the relative depth value, as
shown below

x̃proj = Kũ

x̃cam = Zx̃proj

x̃world = twc +Rw
c x̃cam

where x̃proj is the ray projected from the image, Z is the
depth, x̃cam is the 3D point in the camera frame, x̃world is
the 3D point in the world frame, and twc and Rw

c are the pose
of the camera in the world frame.

MMDetection is an open source object detection toolbox
based on PyTorch. It is a part of the OpenMMLab project.

Detect object positions and classes - MMDetection
Find relative inverse depth - MiDaS (DPT large architecture)
Crop people, traffic lights for further processing
Traffic light color detected - HSV segmentation and thresh-

olding
Convert 2D person image into mesh - Meta PIFuHD Lanes

painted by finding control points - CLRNet and Blender bezier
curves

The detection of whether brake lights were applied to cars
was conducted using conventional methodologies. Each frame
of the vehicle underwent a comparative analysis with its
preceding frame to ascertain the presence of increased redness,
indicative of brake activation.

The determination of frame redness involved applying a
color threshold utilizing the adaptive threshold method pro-
vided by the OpenCV library. This process facilitated the
identification and quantification of red pixels within the frame.

Moreover, the Connected Components with Stats method
from the OpenCV library was employed to obtain bounding
boxes delineating the regions corresponding to the vehicle’s
tail lights. Subsequently, the redness analysis was specifically



conducted within these bounded regions to infer the activation
status of the brakes.

III. RESULTS - FOR EACH CASE IN EACH PHASE

Fig. 1. Car braking action in blender

Fig. 2. Truck braking action in blender

Fig. 3. depth detection at day



Fig. 4. depth detection at night

Fig. 5. Bounding box at day

Fig. 6. bounding box at night

Fig. 7. Lane generation using the blender array and Bezier curve modifiers

IV. CHALLENGES AND RESOLUTIONS

A. Relative depth estimation
The relative depth estimation from MiDaS provides

information on the relative depth between objects, but not
the absolute distance between them, or from the camera. To
convert from relative to absolute depth, we scaled the depth
value using the height of known objects in the environment
like stop signs, and tuning. This provided good results when
objects were close to the camera, but became poor the further
away they were.

This is because at larger distances, the relative depth be-
tween objects becomes less apparent as shown in 8. This led
to objects at a distance spawning at the same depth, which did
not match the ground truth.

Fig. 8. Objects further away from the camera appear to have similar relative
depth (same color)

To resolve this issue, we can use information from the
bounding box of objects, focal length, and their known size.

hw

hi
=

dw
f

dw = kf
hw

hi

where k is a scalar tuning value, and hi is the height of
the bounding box.

We compared the bounding box approach alone, and MiDaS
approach alone, and found that a blended approach was better.
At close distances, we used the MiDaS approach and at greater
distances, we used the bounding box approach. The height of
the bounding box is used as a proxy for the distance from the
camera. This is achieved by creating a closeness bias, α, a
sigmoid function:

α =
1

1 + exp (−(k1(x− x0)))



where k1 is the horizontal scaling factor (k1 = 0.05) and
x0 is the horizontal shift (x0 = 130). The horizontal shift
represents the height of the bounding box at which the bias
becomes 0.5.

The final depth value is thus a function of how close an
object is to the camera, by proxy of bounding box height,
given by:

Z = αf1(u, v) + (1− α)f2(hi, hw, f)

where α is the closeness bias, f1 is the MiDaS depth, and
f2 is the bounding box depth.

The use of the HSV color space for traffic light color
detection posed significant challenges, primarily due to the
orange casing of the traffic lights. This presented a major
obstacle since detecting the traffic light signal color relied on
counting the number of pixels within the ranges of red, orange,
and green. However, due to the dominance of orange pixels,
the color detection algorithm consistently identified orange as
the dominant color, regardless of the actual signal color.

To address this issue, a novel approach was devised involv-
ing clever color thresholding. Specifically, a crop of the traffic
light facing side was obtained, allowing for the extraction
of color ranges present within the image. As the majority
of pixels in this cropped region corresponded to the orange
casing, it facilitated the accurate determination of the range of
orange hues. Notably, this particular shade of orange appeared
muted in the cropped image, thus distinguishing it from the
orange light color emitted by the traffic light itself.

Through this innovative technique, the challenges posed by
the orange casing were effectively mitigated, ensuring more
accurate and reliable traffic light color detection.

As previously discussed, the detection of brake lights en-
tailed a comparison of redness levels between the current and
past bounding box crops. Initially, this method only provided
the brake status at the moment when brakes were engaged,
but did not sustain detection while brakes were in the process
of activation.

To address this limitation, an additional condition was
introduced to detect a decline in redness levels. Consequently,

the brake status remains classified as ”brake applied” until the
redness diminishes, thus aligning with the original scenario.
This enhancement ensures a more comprehensive and accurate
assessment of brake activation throughout its duration.

As previously mentioned, employing PIFuHD provides de-
tailed meshes and poses of humans within the scene. How-
ever, inherent inaccuracies in pose estimation can introduce
noticeable jittering effects in the video for human subjects. To
address this issue, a smoothing technique was implemented,
leveraging poses extracted from preceding frames. By averag-
ing the poses across these previous frames, a smoother transi-
tion in pose is achieved, offering a more faithful representation
of reality in the video footage.

B. Observations

The depth estimation worked well mostly, with the tuned
depth scale generalizing well to all scenes. Since depth es-
timation primarily relied on MiDaS, inaccuracies propagated
in all axes during scene estimation. The render worked best
in highway scenes where vehicles are facing forward. On
the contrary, in scene 8, vehicles turning are rendered facing
forward due to the lack of pose tracking.

The MMDetection object detection library was reasonably
good at classifying vehicles and objects during day time but
struggled in poor lighting conditions. This was observed in
scene 12 (night time) and scene 2 (tunnel) where vehicles
would sometimes not be recognized. Furthermore, there was
ambiguity in classifying trucks, SUVs, pickup trucks and
buses. This led to objects flickering between vehicle classes.

An oscillation was observed when vehicles were close to
the camera, like in scene 9. This is likely due to the rapidly
changing gradient in MiDaS depth at the bottom of the image.
This stabilized as the vehicle moved further away.

Traffic light detection works predicts way better during
night due to the high contrast between lights. It confuses a
bit between red and orange because of camera color science
and but the accuracy doesn’t take a huge dip.

The efficacy of traffic light detection notably improves
during nighttime operations, primarily owing to the heightened
contrast between the illuminated lights. Despite encountering
occasional challenges, such as confusion between red and
orange signals due to nuances in camera color science, the
overall accuracy of the detection mechanism remains consis-
tently robust.



V. RESULT

Fig. 9. scene 1

Fig. 10. scene3

Fig. 11. scene4

VI. REFERENCES

1) https://pytorch.org/hub/intelisl/midas v2

2) https://github.com/TechToker/Vehicle-rear-lights-
analyser/tree/master

3) Mauricio Casares, Akhan Almagambetov, Senem Veli-
pasalar, A Robust Algorithm for the Detection of Vehicle
Turn Signals and Brake Lights

4) https://mmdetection.readthedocs.io/
5) https://github.com/hirotomusiker/CLRerNet
6) Hiroto Honda, Yusuke Uchida, CLRerNet: Improving

Confidence of Lane Detection with LaneIoU
7) https://shunsukesaito.github.io/PIFuHD/

Fig. 12. scene6

Fig. 13. scene7

Fig. 14. scene9

Fig. 15. scene11



Fig. 16. scene 13


	Introduction
	Proposed approach
	Pixel to world coordinates

	Results - for each case in each phase
	Challenges and Resolutions
	Relative depth estimation
	Observations

	Result
	References

