
RBE/CS 549 Project 3
Einstein Vision

Blake Bruell
Worcester Polytechnic Institute

babruell@wpi.edu

Cole Parks
Worcester Polytechnic Institute

cparks@wpi.edu

Abstract—This report outlines the process of creating a 3D
visualization of a driving scene from a monocular forward facing
camera view. The process is broken down into three phases, each
of which encompass a certain set of target goals. Techniques
were explored and implemented to detect lane lines, detect
objects in the scene, localize objects in 3d space, and create
a 3D visualization of the scene using Blender. The report also
discusses the challenges faced and the results obtained from the
implementation of the techniques.

I. PHASE 1

In the first phase of this project our goals were to get basic
features of a scene localized in 3D space, including vehicles,
lanes, pedestrians, traffic lights, and road signs. To accomplish
this, we looked at different possible pipelines for the object
detection and localization.

A. Object Detection

Some techniques for object detection, such as described
in 3D Bounding Box Estimation Using Deep Learning and
Geometry [1], will directly output a 3D bounding box of teh
detected objects using a single image. These techniques have
the distinct advantage of providing all needed information to
render the object from a single technique, but in general the
performance of these technique can be limited by the fact that
are doing so much. In addition, pre-trained weights on classes
other than vehicles were not easily available, and as such our
team looked for other solutions.

The obvious choice, then was to use a information from
multiple different networks, each providing some needed infor-
mation. At the bare minimum, two networks would be needed:
one to detect objects, and one to predict depth. Our team
chose solutions which were easy to get running, as we wanted
to focus on getting outputs from the networks as quickly as
possible. To this end, we elected to use the YoloV9 framework
[2], due to its outstanding performance, and also ease of use
due to the fantastic Ultralytics framework for YOLO models.
The output of the YOLO model is shown in Figure 1.

B. Depth Estimation

For depth estimation, there are many different techniques
available. One technique in particular stuck out in the early
research that our team did, namely ZoeDepth [3]. ZoeDepth
is monocular metric depth estimation technique which builds
upon the MiDaS architecture. The ZoeDepth model is trained
on both indoor and outdoor scenes, and is able to generalize

Fig. 1: Output of YOLO model

Fig. 2: Output of ZoeDepth model

very well. ZoeDepth also had the distinct advantage of being
setup to be run via TorchHub, a online repository of networks.
As such, getting the network running, and integrating it into
the existing YOLO pipeline was much easier. The output of
the ZoeDepth model is shown in Figure 2.



C. 3D Localization

Once the outputs from YOLOv9 and ZoeDepth were ob-
tained, the next step was to localize the objects in 3D space.
This was done by first taking the center of each bounding box,
and then using the depth map to get the depth of the object at
the center of the bounding box. The pinhole projection model
was then used to get the 3D coordinates of the object. We
began with the pinhole projection model, which is shown in
Equation 1. In this equation, λ is a scalar, K is the camera
intrinsics matrix, R is the rotation matrix, t is the translation
vector, X , Y , and Z are the 3D coordinates of the object, and
x and y are the 2D coordinates of the object in the image.

λ

xy
1

 = K
[
R t

] 
X
Y
Z
1

 (1)

The equation was then simplified by assuming R and t
are the identity matrix and zero vector, respectively. This
simplification is shown in Equation 2.

λK−1

xy
1

 =

XY
Z

 (2)

From this equation, we could get the ray direction of objectXY
Z

 = λK−1

xy
1

 (3)

where λ was a normalization factor, so that the magnitude
of the ray direction vector was 1. The 3D coordinates of the
object were then calculated by multiplying the ray direction
vector by the depth of the object at the center of the bounding
box, which gave the object’s 3D location.

This pipeline was very effective, but it was limited by the
fact that the ZoeDepth estimates the depth of the object’s
surface, and not the center of the object. This meant that the
3D localization was not perfect, but it was still very good. The
output of the 3D localization is shown in Figure 3.

The benefit of this pipeline is that is simple, fast, and applies
for all classes of objects that the YOLO model can detect.
The downside is that the 3D localization is not perfect, and
no information about orientation is provided.

D. 3D Rendering

Finally, to 3D render the scene, a json data-structure was
created which contained the 3D coordinates and class of each
detected object. This json file was then read in by a Blender
python script which placed each object in the scene at the
correct location. The output of the 3D rendering is shown in
Figure 3.

E. Lane Detection

There were many choices for lane detection, but we sought
to use a technique which gave 3D lane outputs directly. We
found many such powerful techniques, such as BEV-LaneDet

(a) Input image to pipeline.

(b) Output of 3D localization.

Fig. 3: 3D localization of objects.

[4] and PersFormer [5], but we ran into some serious chal-
lenges with getting these networks running. In both cases, the
code was publicly available on GitHub, but dependencies were
not well documented, and when documented were often many
years out of date, making it difficult to setup the environment
to run the network. In some cases pre-trained weights were
missing, making it difficult to run the test the network, or
simply prohibitively expensive to train the network. In many
cases, the networks were only setup to be trained and validated
on datasets, and not to perform inference on new data. As a
result, we were unable to get these networks running in time
for the first phase of the project.

II. PHASE 2

In the second phase of this project, our goals were to
successfully detect lanes, traffic light colors and type, and
estimate car poses. We began this section by performing a
comprehensive literature review to understand the state-of-the-
art techniques for each of these tasks. We then moved forward
with the techniques which showed the most promise.



Fig. 4: Output of lane detection from YOLOPv2 [7].

A. Lane Detection

Given that lane detection was missing feature from our
Phase 1, we wanted to get this working as soon as possible.
The techniques which provided 3D lane output discussed in
the previous section were still not working, so our team looked
into more techniques.

1) Other 3D Lane Detection Techniques: Other lane detec-
tion techniques were considered, such as Anchor3DLane [6].
Again, the same issues with functionality were encountered,
and proved too time consuming to resolve. As such our team
decided to look into techniques which provided lane output in
2D image space.

2) Segmentation of Lane Lines: The first class of technique
that we found in the literature were techniques which seg-
mented the lane lines in an image. The first technique we came
across was an extension of YOLO for the express purpose of
driving perception, called YOLOPv2 [7]. This network not
only segmented the lane lines, but also provided segmentation
of other regions, such as drivable area, and also detected
vehicles in the scene. The output of this paper on our test
data is shown in Figure 4. As is apparent in the image, the
lane segmentation was not very precise, which would make it
difficult to fit 2D lane lines to the output of this network. Even
more problematic, the different lane lines were all classified
with the same mask. This was a problem, as our rendering
pipeline used Bézier curves to interpolate between a set of
sampled points of each lane line separately. This meant that
the output of this network was not suitable for our purposes.

Another segmentation technique using a Mask RCNN back-
bone was considered, but again, the output was not suitable for
our pipeline, and the documentation and code for the technique
were not as easily available as the YOLOPv2 technique.

3) 2D Lane Line Fitting: The final class of techniques
considered would return lane line coordinates fitted to each
individual lane line. These techniques were much more useful
than the segmentation style 2D detection networks, as we
could simply make the assumption that the lanes lay on the
ground plane, and project the 2D lane sample points onto the

(a) Output of CLRNet before preprocessing.

(b) Output of CLRNet after preprocessing.

Fig. 5: Output of CLRNet [8].

ground plane to recover lane lines. The first technique our team
considered was CLRNet [8]. This network provided decent
output, and had documentation on how to run inference with
the network on new images. The output of the network is
shown in Figure 5a.

Initially, the output of the network was underwhelming,
but it was noted that the input images lacked contrast and
brightness, and so did not match the training images well.
We therefor applied a simple preprocessing step to the images
before detecting lanes, which proved effective at improving
the output of the network. The output of the network after
preprocessing is shown in Figure 5b.

An extension of CLRNet, discussed in Recursive Video Lane
Detection, added temporal information to the network greatly
improving the consistency of the output on video inputs [9].
Again, the codebase could not be made to function on our test
data, and so our team settled on using the CLRNet network
for lane detection.

4) Lane Line Reprojection: Once the lane lines were de-
tected, the next step was to re-project the 2D lane lines



Fig. 6: Re-projected lane lines.

onto the ground plane. This again began with the pinhole
projection model, as described in Equation 1. We then made
the assumption that the camera was looking straight ahead, and
that the ground plane was perpendicular to the XZ plane with
Y = −1.5. This allowed us to simplify the pinhole projection
model to the form shown in Equation 4.

λ

xy
1

 = K
[
I 0

] 
X

−1.5
Z
1


 X
−1.5
Z

 = λK−1

xy
1


(4)

From this equation, we could get the 3D coordinates of the
lane lines. The output of the re-projected lane lines is shown
in Figure 6.

B. Traffic Light Color Detection

While the YOLOv9 pipeline from Phase 1 provided 3D
localization of traffic lights, it did not provide the color of
the traffic light. Our team looked into the literature, and found
that some people had fine tuned a YOLO network to detect
traffic lights and their colors. We decided to use this technique,
as it would fit nicely into our existing pipeline. We used data
from cinTA v2 dataset to fine tune a YOLOv8 network [10],
but the output proved very poor, as detection of traffic lights
in the first place was much more inconsistent, and even when
detected the color was not correct. Some data manipulation
was attempted, such as increasing the contrast, changing the
color space, and changing the size of the images, but the output
of the fine-tuned networks still remained unusable. Due to time
constraints, our team decided to ignore the traffic light color
detection for the time being, and focus on the other tasks.

(a) Output on training data.

(b) Output on test data.

Fig. 7: Output of 3D Bounding Box Estimation Using Deep
Learning and Geometry [1].

Given more time, classical methods would have been pursued
using brightness andn some color thresholding to perform the
traffic light classification.

C. Car Pose Estimation

Crucially missing from the first phase of this project was
the ability to estimate the pose of the cars in the scene. This
was a difficult task, as the only information we had about the
cars was their bounding boxes. Many techniques have been
proposed over the years, but our team turned back to 3D
Bounding Box Estimation Using Deep Learning and Geometry
[1], as it not only provided pose of the object, but also the
3D location. The output of the network on data from the
dataset the network was trained on is shown in Figure 7a,
and the output of the network on our test data is shown in
Figure 7b. As is apparent from the comparison, the network
did not generalize well to our test data, or some other issue
was present. This failure, along with the fact that networks
which predicted both bounding box and pose would preclude
the use of the YOLO pipeline, prompted out team to look into
other techniques for car pose estimation.

The next technique which our team looked into was called
EgoNet [11], which had the advantage that it could take in the
output of the YOLOv9 network, and then predict the pose of
the cars in the scene. The network also came with pre-trained
weights, necessary due to our time constraints, but again the
code base failed to have good support or documentation on
how to run inference on new images. Due to these issues, our



team did not include any pose estimation in our pipeline for
Phase 2.

III. PHASE 3

In the third phase of this project, our goals were to flesh out
pose detection for cars, and add in the ability to detect traffic
light colors, and improve the rendering pipeline so that entire
scenes could be rendered in a reasonable amount of time.

A. Improved Depth Detection

Another issue which presented itself in previous phases was
the issue with using the centroid of the bounding box for depth
estimation. Objects could be occluded in a such a way that
the centroid lay on pixels which did not actually belong to the
object, and as such the depth would be predicted incorrectly.
To solve this, the segmentation version of YOLOv9 was used,
which provided a mask for each bounding box of a detected
object. A simple scheme wherein the median of the depth of
each pixel in the mask was used as the depth of the object
was implemented. The difference between the outputs of the
two network versions, as well as the resulting depth mask, is
shown in Figure 8.

Another consideration with the depth estimation, as men-
tioned in Phase 1, is the fact that the ZoeDepth estimates the
depth of the object’s surface. This was accounted for partially
by offsetting the depth of detected vehicles by one meter.

B. Improved Lane Detection

When running the CLRNet pipeline on some test videos,
the output proved very poor, and so causes of the poor
performance were assessed. First, hyperparameters of the
network were tuned, specifically the cut distance, image size,
and sampling range parameters, but these did not lead to
consistently better results. Our team then noticed that the pre-
trained weights and configuration of the network were set up
for the CULane dataset, which did not match our input data
well. The network also had weights and configuration for the
LLAMAS dataset, which matched our input data much better,
and so the hyperparameters were transferred to the existing
LLAMAS configuration, and the network was tested again.
This time, the output was significantly better, as shown in
Figure 9.

C. Pedestrian Pose Estimation

Pedestrian pose estimation was performed using derivative
of YOLOv8 trained on poses, provided by Ultralytics [12].
This network detected pedestrians and accurately predicted
poses, but we were unable to integrate it into our pipeline.
The output of the network is shown in Figure 10.

D. Improved Rendering Pipeline

The pipeline for rendering an entire scene was also im-
proved in this stage. The details of the rendering pipeline are
shown in Figure 11 in Appendix A.

(a) YOLOv9 without segmentation.

(b) YOLOv9 with segmentation.

(c) Masked depth of one car. Notice the outlier points, which
are ignored using the median scheme.

Fig. 8: Improved depth detection using segmentation.



(a) CULane weights and configuration.

(b) LLAMAS weights and configuration.

Fig. 9: Comparison of CLRNet lane detection on a difficult
frame using two different weights and configurations.

Fig. 10: Pedestrian pose estimation using YOLOv8.

IV. SHORTCOMINGS

After completing our entire pipeline, there are clearly some
shortcomings, and things our team could simply not get
working. Most notably car pose estimation and traffic light
color detection were not fully implemented. There were some
other subtle things missing, such as traffic cones, rigging
pedestrian model in blender, lane type, speed limit signs, break
light detection, and moving vs stationary vehicles. Most of
these features were not implemented as networks found for
the task could not be made to function on our data, but others
were simply not implemented due to time constraints.

Of the pipelines our team did get working, the biggest
limitations were the use of 2D lane line estimation, and the
lack of robust 3D orientation information for detected objects.

V. REFLECTION

Our team put in many hours of work into this project,
and most of that time was spent attempting to get techniques
described in literature to run on our data, or even run at all.
We found many powerful techniques, all with source code
available, but despite this could not manage to get things ac-
tually working in time for the deadlines. We noted that the task
of reproducing results from pervious papers, and generalizing
the code to new data was tedious, and also very exhausting,
frustrating, and time consuming. This made it difficult to make
progress, as we wanted to avoid committing to a technique
which would not work. The unbounded nature of the target
goals for this project also made it harder to keep work focused
and directed at the most important tasks. To address these
challenges, our team frequently created priority lists and split
up work into tasks which were entirely parallelizable to ensure
that the most worthwhile tasks were completed first, and that
work was never held up by the progress of the other individual.

The second aspect of this project which made it difficult
to motivate (but something which cannot be avoided with this
kind of work) was the fact that the project was not about
understanding or developing intuition or rigorous knowledge
about a topic, but rather was concerned purely with results.
This project showed the difficulties with the latter goal, as
well as allowed our team to gain a first hand idea of what
we enjoyed and did not enjoy about this aspect of the field of
computer vision.

On the positive side, while we may not have found the
actual work enjoyable, and did not learned much about the
actual techniques being used, as it would have simply been
too much work, we did learn about the process of doing
reviews of papers and replicating results. We learned both
what makes it challenging and frustrating, and also the value
in having experience in doing so. This project gave our team
a initial taste of this experience, and also provided a good
opportunity to learn about the challenges of working with other
people’s code, and the importance of good documentation and
code quality. The challenges we faced in this project provided
motivation to continue to ensure that the code we write is
reproducible, understandable, and applicable by others.



REFERENCES

[1] A. Mousavian, D. Anguelov, J. Flynn, and J. Kosecka,
“3d bounding box estimation using deep learning and
geometry,” CoRR, vol. abs/1612.00496, 2016. arXiv:
1612.00496. [Online]. Available: http://arxiv.org/abs/
1612.00496.

[2] C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao, “YOLOv9:
Learning What You Want to Learn Using Pro-
grammable Gradient Information,” arXiv e-prints,
arXiv:2402.13616, arXiv:2402.13616, Feb. 2024. DOI:
10 . 48550 / arXiv . 2402 . 13616. arXiv: 2402 . 13616
[cs.CV].

[3] S. F. Bhat, R. Birkl, D. Wofk, P. Wonka, and M. Müller,
Zoedepth: Zero-shot transfer by combining relative and
metric depth, 2023. arXiv: 2302.12288 [cs.CV].

[4] R. Wang, J. Qin, K. Li, Y. Li, D. Cao, and J. Xu,
Bev-lanedet: A simple and effective 3d lane detection
baseline, 2023. arXiv: 2210.06006 [cs.CV].

[5] L. Chen, C. Sima, Y. Li, et al., Persformer: 3d lane
detection via perspective transformer and the openlane
benchmark, 2022. arXiv: 2203.11089 [cs.CV].

[6] S. Huang, Z. Shen, Z. Huang, et al., Anchor3dlane:
Learning to regress 3d anchors for monocular 3d lane
detection, 2023. arXiv: 2301.02371 [cs.CV].

[7] C. Han, Q. Zhao, S. Zhang, Y. Chen, Z. Zhang, and
J. Yuan, Yolopv2: Better, faster, stronger for panoptic
driving perception, 2022. arXiv: 2208.11434 [cs.CV].

[8] T. Zheng, Y. Huang, Y. Liu, et al., Clrnet: Cross layer
refinement network for lane detection, 2022. arXiv:
2203.10350 [cs.CV].

[9] D. Jin, D. Kim, and C.-S. Kim, Recursive video lane
detection, 2023. arXiv: 2308.11106 [cs.CV].

[10] W. Pradana, Cinta v2 dataset, Open Source Dataset,
visited on 2024-04-05, Jun. 2022. [Online]. Available:
https://universe.roboflow.com/wawan-pradana/cinta v2.

[11] S. Li, Z. Yan, H. Li, and K.-T. Cheng, Exploring
intermediate representation for monocular vehicle pose
estimation, 2021. arXiv: 2011.08464 [cs.CV].

[12] Ultralytics, Pose, Mar. 2024. [Online]. Available: https:
//docs.ultralytics.com/tasks/pose/.



APPENDIX A
PIPELINE DETAILS

Fig. 11: Final rendering pipeline. Green blocks are files, yellow
blocks are Python scripts. Within the Python blocks, purple
blocks are networks, and blue blocks are hand written steps.

APPENDIX B
RESULTS

Fig. 12: Scene 6 output at frame 943.

Fig. 13: Scene 7 output at frame 583.

Fig. 14: Scene 8 output at frame 547.



Fig. 15: Scene 13 output at frame 1165.


