
RBE549 Project 3 - Einstein Vision
Yaşar İdikut

yidikut@wpi.edu
Using 2 late days

Harshal Bhat
hbhat@wpi.edu

Using 2 late days

I. INTRODUCTION

In this project, we are tasked with creating 3D visualization
for a car equipped with cameras. Of the four given cameras,
we only use the front-facing one. We are given 1 minute-long
13 scenes with around 2000 frames for each of the scenes. Our
approach for processing and rendering is per frame. We don’t
employ any object permanence or tracking logic. We rely on
multiple object detection models and classical approaches for
finding and reasoning about the images, and a metric depth
estimation model to project the objects detected in the image
in the coordinate frame of our rendering program (Blender).

In the next few sections, we will go over our methodology
and results for the detection and vizualization of following
tasks:

• Phase 1: Basic Features
– Lanes
– Vehicles (with pose and types, which was added at

phase 2)
– Pedestrians (with pose, which was added at phase 2)
– Traffic Lights
– Road Sign (Stop Sign)

• Phase 2: Advanced Features
– Traffic Objects (Dustbins, Traffic Poles, Traffic

Cones)
– More Road Signs (Ground Arrows and Speed Limit

Signs)
• Phase 3: Bells and Whistles

– Break Lights and Indicators of the other vehicles
– Stationary and Moving Vehicles

II. I. PHASE 1: BASIC FEATURES

A. Lane Detection and rendering

We preprocess the image by resizing, padding, and nor-
malizing the images to a uniform size and format suitable
for analysis. YOLO Panoptic v2[1] is used for predicting
the contours (compressed pixel indices) of the lanes which
are further processed to filter out false positives. Non-max
suppression is employed to eliminate overlapping detections,
ensuring that each detected lane is unique and accurately
represented. A binary mask that highlights the lane lines
from the segmentation predictions and converts them to a
mask format. These masks are then used to find contours,
which represent the lane. These contours are filtered based
on the area to remove small, irrelevant detections, leaving

only the significant lane markings. In figure 1, the lane
lines are highlighted with blue color. These pixel indices are
then mapped on the blender world coordinate frame using
ZoeDepth [2]. The depth estimation for this scene can be seen
as a grayscale image in 2. Using pixel locations of each pixel,
camera intrinsics, and depth estimation for that pixel, we can
use simple trigonometry to find the projection of each pixel
in Blender world coordinate frames. We reject projections that
lie 10cm above the the ground as we know that lane markings
need to be on the ground. We visualize the 3D projected points
in 3. For each of the lane lines, we fit a 2nd-degree polynomial.
We break the line into 3 meter-long segments and sample
the centroid of each segment. This centroid is the origin of
the rectangle spawned in Blender. To get the direction of the
rectangle, we also look at the derivative of the centroid.

Fig. 1. Side-By-Side Annotation and Rendered Output for the Lane Detection
Task (Scene 1, Frame 368)

B. Vehicle Detection
We used YOLOv8-seg for detecting the contour masks of

the vehicles. Detected objects are filtered to include only
relevant categories such as cars, trucks, motorcycles, and
Bicycles. Detected vehicles are annotated on the original
images, by drawing contours around the vehicles, marking
centroids, and adding text labels indicating the object class and
confidence levels. Each of the vehicles are then projected on
the Blender world coordinates using depth estimation similar
to as described in II.A. The difference in vehicle projection is
as follows. or cars, 1.5 meters is added to the depth estimation
of the centroid of the car in the image because this would give
a better depth estimation of the 3D centroid of the car. For
trucks, this is 2 meters. For motorcycles and bicycles, this is
0.5 meters.

For each of the detected vehicles, we also run 3D Pose
estimation as described in [] and YOLO3D [refs]. However,



Fig. 2. The Depth Estimation Output for the Frame Used for 1

Fig. 3. 3D Projection of Lane Lines in Blender World Coordinates

since we are only interested in the Z-axis rotation, we don’t
visualize the bounding box.

Fig. 4. Visualization Output Showing Detection of Cars and Trucks

C. Pedestrian Detection

In this task, we use the work of [4] to detect pedestrians and
their pose. This work relies on YOLOv5 for person detection
and another model to detect the human pose. We use the

Fig. 5. Visualization Output Showing Detection of Motorcycles

Fig. 6. Visualization Output Showing Detection of Bicycles

bounding box information and the generated .obj files to render
pedestrians.

Fig. 7. Visualization Output Showing Detection of Pedestrian

Fig. 8. Visualization Output Showing Detection of Another Pedestrian

D. Traffic Signs Detection and Classification

The YOLOv8 object detections include traffic lights, how-
ever, color is not detected. Initially we performed HSV thresh-
olding without position logic, which gave many edge cases.
Therefore we added position logic also to it. We crop the
region of interest from the bounding boxes and keep only the
center 50% of the cropped ROI to make sure the pixels outside
the traffic light don’t affect the average brightness calculations.
We perform color space conversion from RGB to HSV for



the color segmentation task. The value channel of the HSV
image which represents brightness, is analyzed to identify the
illuminated section of the traffic lights. The resized traffic light
is divided vertically into three equal sections, corresponding to
the typical arrangement of traffic lights(red at the top, yellow
in the middle, and green at the bottom). The brightness levels
within each section are summed up to determine the most
illuminated section. The section with the highest brightness
sum is presumed to be the illuminated part of the traffic light.
Based on its position(top, middle, or bottom), the traffic light
is classified as red, yellow, or green, respectively.

Fig. 9. Visualization Output Showing Detection of Traffic Lights and Their
Color

Fig. 10. Cropped Traffic Light

Fig. 11. Average Normalized Brightness Traffic Light Color Locations

E. Road Signs

For stop sign detection we use YOLOv8-seg model again
and render in blender based on the texture to spawn a new
object in the blender world.

F. Challenges

The curvature of the polynomial is dynamic and becomes
high for straight lines as well. The traffic light color detection
was done using HSV thresholding, however during night times
and flaring environments adaptive thresholding didn’t work out

Fig. 12. Stop Sign Detection

well. This approach was changed to brighntess estimate based
on luminance and position estimates.

III. II. PHASE 2: ADVANCED FEATURES

A. Vehicles

3D poses of vehicles are done by integrating the Yolo3D
model into our existing Yolov8 detection framework. For each
detected vehicle, orientation and dimensions are estimated
using a ResNet18-based regression model. This involves crop-
ping the detected vehicle from the image, resizing it, and
normalizing it before feeding it into the network. For each
vehicle, the angle of orientation(ry) is calculated by combining
the model’s orientation output with the vehicle’s centroid
position relative to the camera’s perspective. This angle is
crucial for understanding the vehicle’s direction relative to the
camera’s viewpoint.

B. Road Signs

1) Speed Sign: We created a traditional approach system
that uses optical character recognition (OCR) and computer
vision techniques to identify speed limit signs in frames. It
scans images, uses HSV color space filtering to extract bright
areas that might be speed signs, and recognizes contours
that roughly match the dimensions and design of speed limit
signs. When a contour meets these requirements, the enclosed
region is examined and Pytesseract is used for optical character
recognition (OCR) to extract numeric text. This text is then
verified to correspond with standard speed limit values.

Fig. 13. Speed Limit Detection

2) Arrow detection: To highlight bright areas suggesting
arrows, color space conversion, and thresholding are two
image processing techniques that are used to isolate possible
arrow regions in the driveable area. These highlighted regions’
contours are then retrieved, and their size is used to filter
out unlikely possibilities. The orientation of each arrow is



determined for each contour that remains by converting 2D
image coordinates into 3D world coordinates using depth
information and camera calibration data. This orientation
denotes the arrow’s recommended direction, such as turning
or moving straight ahead.

To get direction, we simply fit a line through the arrow.
However, this is not enough to get the full direction as we
won’t be able to differentiate between ahead and towards. For
this, we compare the bounding box center and mass centroid
of the arrow.

Fig. 14. Contours of Detected ground arrow

Fig. 15. Ground Arrow Detection

C. Other Objects

Other objects like road traffic cones, dustbins, and poles are
detected by the Detic model. We save the contour information
of each object based on the custom vocabulary dictionary like
cones, poles, dustbins and parse their confidence scores.

D. Challenges

Detecting the arrow on traffic signs was challenging work,
using a custom-trained network for this task was not robust
as the network was biased and gave only left signs. Applying
traditional thresholding was erroneous due to environmental
glare and different lighting conditions. We initially used Zoe
depth[2] for getting the metric depth, however, scaling had
to be fine-tuned which changed in different scenes. The
pedestrian mesh generation model used was HybrIK, however
it identified only 1 pedestrian per frame. Idea-OSX require a

Fig. 16. Sample Detic Detection for other objects

Fig. 17. Cone and Poles Detection

Fig. 18. Dustbin Detection

Fig. 19. Pedestrian Pose estimation and Speed Limit Edge Case



bunch of human model files and locating the complete human
models can be found here[3]. Speed Limit detection was not
robust, as seen in Figure 9. Pedestrian is detected but speed
limit sign detection is missed. This can be made more reliable
by incorporating a better region of interest estimation like a
trained model on LISA dataset than traditional approach.

IV. III. PHASE 3: BELLS AND WHISTLES

A. Brake lights

The contours of cars are recognized using YOLOv8-seg
model. We determine places inside the car’s shape that have
been identified as probable tail or brake lights based on DETIC
model predictions. This is accomplished by comparing the
luminance (brightness) of specific spots to the total luminance
of the automobile area; a substantial difference indicates that
a light is probably on.

We calculate the luminance of each light area by converting
the relevant part of the image to a YCrCb color space,
which separates the luminance (brightness) and chroma (color)
components, allowing for a simple computation of brightness.
If the brightness of a light zone surpasses a predetermined
threshold when compared to the overall brightness of the
vehicle, the light is considered ”on”. The position of the light
(left or right side of the automobile) also influences the car’s
status: both lights on may signal that the car is stopped, whilst
one light may indicate a turn.

B. Parked and Moving vehicles

We use flowmap from Optical flow model RAFT[4]. The
dark gray vehicles are stationary vehicles and the white
vehicles are moving as detected from the model.

C. Challenges

Thresholding luminance values didn’t perform well during
night times. We tried to apply absolute(thresholding luminance
to 550) and relative luminance(tail light luminance greater
than car luminance) logic however that affected our daytime
brake detections. Therefore, more robust approach is needed,
probably vehicle velocity estimation from consecutive frames
would help this approach.

Fig. 20. Brakes applied estimation sample output

Fig. 21. Brakes applied estimation sample output

Fig. 22. Turn Signal applied estimation sample output

Fig. 23. Grayscale Flow for Parked and Moving Vehicle Estimation

Fig. 24. Parked and Moving Vehicle Estimation



Fig. 25. Driving scene semantic rendering pipeline



V. CONCLUSION

REFERENCES

[1] M. Diaz-Zapata, Ö. Erkent and C. Laugier, ”YOLO-based Panoptic Seg-
mentation Network,” 2021 IEEE 45th Annual Computers, Software, and
Applications Conference (COMPSAC), Madrid, Spain, 2021, pp. 1230-
1234, doi: 10.1109/COMPSAC51774.2021.00170. keywords: Measure-
ment;Navigation;Conferences;Semantics;Object detection;Real-time sys-
tems;Software;Panoptic Segmentation;YOLOv3;Autonomous Vehicles,

[2]
[3] https://github.com/isl-org/ZoeDepth
[4] https://github.com/IDEA-Research/OSX human-model-files:

https://wpi0-my.sharepoint.com/:u:/g/personal/hbhat wpi edu/
ERMS0sCw-gpGubgkTTUXBkQBir4lOC2bOU9XyVZnXO4Okw?
e=Q03Spb

[5] Teed, Zachary and Jia Deng. “RAFT: Recurrent All-Pairs Field Trans-
forms for Optical Flow.” European Conference on Computer Vision
(2020).

https://wpi0-my.sharepoint.com/:u:/g/personal/hbhat_wpi_edu/ERMS0sCw-gpGubgkTTUXBkQBir4lOC2bOU9XyVZnXO4Okw?e=Q03Spb
https://wpi0-my.sharepoint.com/:u:/g/personal/hbhat_wpi_edu/ERMS0sCw-gpGubgkTTUXBkQBir4lOC2bOU9XyVZnXO4Okw?e=Q03Spb
https://wpi0-my.sharepoint.com/:u:/g/personal/hbhat_wpi_edu/ERMS0sCw-gpGubgkTTUXBkQBir4lOC2bOU9XyVZnXO4Okw?e=Q03Spb

	Introduction
	I. Phase 1: Basic Features
	Lane Detection and rendering
	Vehicle Detection
	Pedestrian Detection
	Traffic Signs Detection and Classification
	Road Signs
	Challenges

	II. Phase 2: Advanced Features
	Vehicles
	Road Signs
	Speed Sign
	Arrow detection

	Other Objects
	Challenges

	III. Phase 3: Bells and Whistles
	Brake lights
	Parked and Moving vehicles
	Challenges

	Conclusion
	References

