
Project 3: Einstein Vision
Dhrumil Kotadia

Robotics Engineering Department
Worcester Polytechnic Institute

Worcester, Massachusetts

Dhiraj Kumar Rouniyar
Robotics Engineering Department

Worcester Polytechnic Institute
Worcester, Massachusetts

Using four Late Days for Project 3

INTRODUCTION

This project aims to enhance and reimagine Tesla’s dash-
board visualization for the 2023 Model S. Inspired by Tesla’s
innovation, we have attempted to create a visual dashboard
display using Blender. Our goal is to produce a rendered
video that showcases the front-facing camera view alongside
dynamic representations of the vehicle and its surroundings.
The project is divided into three phases. We shall discuss the
work in each phase in detail in the following sections.

BACKGROUND AND DATASET STRUCTURE

For the dataset, we have the 13 videos representing 13
scenes captured from the 4 cameras of the Tesla models S. The
original distorted and the undistorted videos both have been
provided along with a calibration sequence for the camera.
The dataset also contains a markdown file containing all the
objects present in the scenes. We have divided these videos
into frames and worked with them to render a blender video.
Calibration data was available and K matrix was calculated
from the calibration data.

PHASE1

In phase 1, the following basic features were implemented
for the project:

• Lanes: Different kinds of lanes on the road: solid, dashed,
double lines and colour of the lanes were detected
and implemented. This was actually implemented in
phase 2 completely. In phase1 we had implemented the
YOLOPV2[1] pretrained model to detect the lane lines
and the driveable area. The shortcoming here was that
the pretrained model only provided the masks for the
lanes and the driveable area. The model did not provide
the actual differentiation between different kinds of lanes.
Thus, in phase2, Mask-RCNN[2] was implemented. This
model provides a bounding box for each lane and an
overall mask showing the lanes. It differentiates between
the types of lanes as well. The shortcoming of this model
is that it does not identify the color of the lane. For this,
we resorted to classical methods using OpenCV to detect
the colors.
For each bounding box of the lane marker, we cropped
the image to the size of the bounding box to ensure that

we would only have the lane marker in the image. We
also did the same to the resulting mask provided by the
model to obtain the mask of the cropped image. We will
call this mask1. We dilate mask1 to obtain mask2. Then
we subtract mask1 from mask2. The core idea here is to
generate a mask of the road surrounding the lane marker.
Once we have the Hue, Saturation and Value of the road,
we can compare it with that of the lane marker. If the lane
marker has more saturation than the road, it indicates that
the lane marker is yellow. The lane marker is considered
white in all other cases. The process can be seen in the
image 1

Fig. 1. Lane Color Detection(Left to Right): Lane image, Lane mask, Masked
Lane Image, Masked Image of the road surrounding the Lane

The resulting lane in the simulation can be seen in image
3

Fig. 2. Actual Image and Blender Simulation

• Vehicles: Here, we identify all the cars using YOLOv8
model trained with COCO dataset and represent them as
car shapes in the simulation. This is visible in image 3



Fig. 3. Object Detection using Detic

• Pedestrians: Pedestrians were identified in the actual
images using YOLOv8[3] and rendered them in blender
but did not idOentify the pose of the pedestrians. It should
be noted that we replaced YOLOv8 with Detic[4] in later
phases. Default poses were used for all pedestrians for
this phase.

• Traffic Lights: In phase 1, traffic lights were identified
using YOLOv8. The colors of the traffic lights were iden-
tified using classical methods. YOLOv8 would provide
the bounding box for the traffic light. The bounding box
was used to crop the image and apply two separate filters
generating separate images to extract the amount of red
and green colors each in the traffic lights. Once they
are obtained, both of them were converted to grayscale
and contours were obtained. The resulting contours were
eroded and dilated once to get rid of unnecessary noise.
After this, out of the red and green contours, the contour
with the largest area decides the actual color of the traffic
light. This can be visualized in image 4

Fig. 4. Traffic Sign Color Detection(Left to Right): Cropped image, Grayscale
Image, Green Masked Image and Red Masked Image

• Stop Sign: In this phase, the stop sign is identified using
the YOLOv8 model. The resulting image can be seen in
figure 5

Fig. 5. Image showing the render of stop sign in phase 1

PHASE2

In phase 2, the following advanced features were
implemented for the project:

• Vehicles: In this phase, we identify the different types of
vehicles i.e. Cars, Trucks, Bicycle using YOLOv8 model
trained with COCO dataset. Since the COCO dataset does
not provide classification between sedan, SUV and pickup
trucks, in phase3, the model was changed to a pretrained
Detic model trained with Objects365 dataset. This model
provided the necessary classification between all vehicles.
This is evident in figure 22.

• Traffic Lights: In phase 2, on top of the detection of traffic
lights and colors using YOLOv8 arrows were detected
and rendered. The color of the traffic lights was detected
as done in phase 1. Once the color is identified, if the
color is green, the contours obtained for the green light
were eroded and dilated to obtain a noise free contour.
After this, the contour obtained is the matched to the
previously saved contours of the arrow directions using
cv2.matchshapes. For output, this function provides the
distances between each pair of shapes. The pair with
the least distances indicates the arrow direction. If all
distances are more than a given threshold (0.25 - decided
after various runs), it is decided that the traffic light does
not have an arrow. This can be visualized in image 6.



Fig. 6. Traffic Sign Arrow Detection(Left to Right): Cropped image,
Grayscale Image, Green Masked Image and the Resulting Contour

• Road Signs: In this phase, the road signs (Arrows) are
identified. Here, we make an assumption that only 1 road
sign is visible. For detection, we obtain the driveable
area mask from the YOLOPv2 model. Using the method
described for lane color detection, we identify the road
color. We generate a mask to isolate the colors in the
driveable area. For that, we convert the images to HSV
and keep only the colors that have a high ’V’ value in
the driveable area image. Once we have obtained this, we
convert the image to grayscale and obtain the contours.
Once we have the contours, we select the contour with
the largest area and match it with the pre-saved contours.
As described in the traffic light arrow detection, we match
the contours and obtain the direction of the arrrow. The
entire process can be seen in figure 7 and 8

Fig. 7. (Left to Right)Original Image from Scene 7, Isolated signs on the
road and the Resulting largest Contour obtained

Fig. 8. (Left to Right) Pre-Saved contours Up, Left, Right and Down

In phase 3, we changed the pretrained model from
YOLOPv2 to Mask-RCNN. Mask-RCNN provides
bounding boxes for each lane as well as road sign lines.
Based on the bounding boxes obtained we crop the image
and identify the arrow sign using the method mentioned
above. The only difference is that instead of applying it
on driveable area, we apply it to a bounding box in Mask-
RCNN. This method also has many false positives where
many road crossing lines are detected as up arrows.

• Objects: In phase2, separate networks were used for
detection of objects like traffic cone, drum and traffic pole
- [5], trash bins - [6], speed Limit signs - [7]. The fire
hydrant is detected using the YOLOv8 model. In phase3,
we have updated from YOLOv8 to Detic trained with

Fig. 9. Rendered Images showing pedestrian Pose and Trash Bin

Objects365 dataset. Because of this, we have removed all
separate models as Detic itself now identifies all objects.

• Pedestrians: In phase 2, the pedestrian poses are identified
using the model. The resulting poses rendered can be seen
in figure 9.

PHASE3

In phase 3, we focus on some other details like brake
lights and indicators of the cars as well as showing parked
and moving vehicles using optical flow. This is discussed as
follows:

• Brake Lights and Indicators: For detection of brake
lights, we use the bounding boxes and the masks for
vehicles generated by Detic. We crop the image using
the bounding box and remove the parts of the image that
are not present in the car mask provided by Detic. After
obtaining this, we convert the image to HSV. After that,
we apply a saturation and brightness filter to isolate the
tail lights and identify if the lights are on. This is evident
in figures 20, 13, 14 and 15.

Fig. 10. (Left to Right) Original Image from Scene 11, Isolated masked car
Image and the filtered image to identify brake lights



Fig. 11. Rendered tail light and red traffic light image example

Fig. 12. Rendered tail light and multi traffic light image

Fig. 13. (Left to Right) Original Image from Scene 11, Isolated masked car
Image and the filtered image to identify brake lights

Fig. 14. (Left to Right) Original Image from Scene 11, Isolated masked car
Image and the filtered image to identify brake lights

Fig. 15. (Left to Right) Original Image from Scene 3, Isolated masked car
Image and the filtered image to identify brake lights

Identifying the turning indicators was attempted using
the classical methods but it was difficult to differentiate
between brake lights and turn indicators due to different
ambient lighting conditions. This is a limitation which
could be solved using a machine learning model.

• Traffic Cones, Traffic lights, Lanes and Car Direction:

Fig. 16. Rendered image 1

Fig. 17. Rendered image 2 - SUV and Car



Fig. 18. Rendered image 3 - Road marker

• Speed Limit and Zebra lanes:

Fig. 19. Rendered image

Fig. 20. Rendered image - Hydrant, Speed Limit, Break lanes

• Parked and Moving Vehicles: Parked and moving
vehicles were identified in this phase using op-
tical flow. Optical flow is calculated using OpenCV
(cv2.calcOpticalFlowFarneback) for the frames and the
resulting displacement is recorded. A fixed number of
points(20) are selected in the scene on far left and far

right of the image. If the displacement of these points
is not zero, it is considered and the mean of the norm
of all these displacements is taken. This provides a
threshold for the frame. Next, we consider the bounding
boxes of the vehicles and find the displacement of the
particular vehicle. Once this displacement is obtained,
it is compared to the previously calculated threshold. If
the absolute difference between these two values is less
than a pre-decided value (2 in our case), the vehicle is
considered to be in motion. Otherwise, the vehicle is
considered to be parked. Also, direction of the vehicles
is also displayed with arrows on top of the vehicles. This
can be visualized in figures 21 and 22.

Fig. 21. Optical Flow for a Frame in Scene 5

Fig. 22. Rendered frames showing parked(Gray) and Moving(Yellow) Vehi-
cles and Direction of motion of the vehicles(Arrow on top)

EXTRA CREDIT

For extra credit, we have implemented detection of speed
humps and vehicles that have possible collisions. This is
discussed as follows:



• Speed Humps: For detection of speed humps we have
used the model yolov7 - [8] modified. This can be
observed in figure 23.

Fig. 23. Detected Bounding Box and rendered Speed Hump

• Collision Detection: Optical flow calculation done in
phase 3 has been used to predict collision detection.
From the optical flow, we obtain the future prediction
of vehicles in the frame. Using depth, we obtain the Z
coordinate of the future predicted position. With this, we
calculate the distance between camera and the car in 3D
and if the distance is less than a pre-decided threshold,
we highlight the car to show a predicted collision.

CONCLUSION:

It can be concluded that while we were able to generate
a visualization in blender by using the various deep learning
models and classical methods, the visualization itself is far
from desirable. The inference time for deep learning models
is very high and all classical methods implemented have a lot
of false positives and negatives which make it unusable and
it cannot be implemented on real vehicles. Specially trained
models can highly improve the output and thus can make the
system usable but in it’s current state, it cannot be used.

REFERENCES

[1] https://github.com/CAIC-AD/YOLOPv2.
[2] https://debuggercafe.com/lane-detection-using-mask-rcnn/.
[3] https://github.com/ultralytics/ultralytics.
[4] https://github.com/facebookresearch/Detic.
[5] https://universe.roboflow.com/flood-lzlds/trafik-konileri/model/1.
[6] https://universe.roboflow.com/cyfbxl/-vqmac/model/1.
[7] https://universe.roboflow.com/us-road-signs-projects/us-road-signs.

[8] https://colab.research.google.com/github/jpscard/Deteccao-de-buracos-e-
lombadas-com-yolov7.


