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Abstract—This project entails the thorough implementation of
creating a realistic road scenario visualization using camera sensor
data from an autonomous vehicle. The pipeline from beginning
to end consists of detecting road objects and using Blender 4.0
software to visualize them. We used a variety of object detection
models, including Detic, OSX, Zoe Depth and Mask RCNN, that
were pre-trained using various algorithms and network architec-
tures. The introduction section provides details on the three distinct
phases that comprise the entire project.

I. OVERVIEW

Our method started with the camera being calibrated in order
to extract the camera intrinsic and recover the unprocessed
raw output. The undistorded footage was then subsampled to
produce number of images. We took every 10 frames in the
video, a key frame and gave that keyframes to the models that
are used for the scene semantic rendering.

II. BLENDER RENDERING

To render the modeled scene semantically, we used Blender as
the rendering engine. We utilized Python scripting to reconstruct
the scene for each frame in the JSON file, which contained the
outputs from the scene modeling process as a single JSON file.
After that, we produced an image of the frame using the blender
camera. Every frame, we use Blender to erase the previous scene
and build the scene from scratch. To streamline the process
of drawing lanes with varying colors and types, we employed
blender’s geometry nodes. The lane geometry node draws the
appropriate lane after receiving the lane type and cubic bezier
control points.

III. MODELS USED FOR DIFFERENT CASES

A. Lane detection

Masked RCNN, a model that predicts types of lanes in image
space on monocular camera pictures, we utilized this model for
lane detection which segments type of lane solid or dashed. But
it does not classify the color of the lane detected. So we don’t
have the colors for the lane. We also took the data for road lane
signs like right turn, straight arrow from this model. For solid
line we took 5 points on the line and, for dotted line we took
the starting and end points for the line, for road signs we used
the whole contour of the sign. However, this model cannot work
properly when there are no lane lines on the road.
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Fig. 1. Black Vehicles are Moving and White Vehicles are Parked

B. Pedestrian Detection with Pose

The pedestrian detection was done by using OSX model. This
model allowed for the direct retrieval of the 2D bounding box,
mask, and confidence level for each detected pedestrian with
their pose. To estimate the depth of the pedestrian, we employed
Zoe Depth, a model capable of estimating depth from monocular
images. To determine the position along the x and y axis we
use depth for x-axis and calculated the center by converting the
bounding box center in the world coordinates and then plot that
center in y-direction, and then scaled the person accordingly.
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Fig. 2. Input, Output Images

C. Object Detection

For object detection and classification we used DETIC model.
It consist of more than 20000 classes based on different dataset
which gives output as the bounding box , mask and confidence
of the detected object. We used this data to classify different
types of vehicles, traffic light, cones, different types of traffic
assets. All of them are detected using Detic model. We dumped
all the data into a JSON file consisting of the labels , centers
of the detected bounding box , the color of the traffic light if
detected and again using Zoe Depth we calculated the depth of
the object. To detect the color of the traffic light we extracted
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patch of the traffic light from detic output and used the classical
approach for the detection of color in that approach we initially
threshold the image to get mask for red, yellow and green color
and then calculated the percentage of pixels in each masks,
whichever percentage was higher we selected that as the color
of the traffic light and if not detected we assumed the color to
be red for safety reasons.

We tried to find some better model which detects the arrows
in the traffic light but unfortunately we couldn’t find any better
pretrained model to detect the arrows of the traffic lights.

We were also not able to get the speed limit signs. The main
drawback of this model was in its accuracy. It was able to predict
even small objects from the image but the classification was
not that quite accurate. In many cases, for example, it predicted
SUV’s as Truck.

D. Types Of Vehicles

For the classification of type of vehicle we used a repository
Car-Model-Classification which is a better version of a pub-
lished kernel on kaggle which was on ResNet34 architecture and
the pretrianed model we used was trained using MobileNetV2
architecture. It was trained on stanford cars dataset. The output
of this model gives us 49 different car company and 18 different
car types, we made a small change in the code as we only
needed the car type without the model of the car, once the car
is classified we took the type of the car and if the car is not
recognized in any type we assumed it to be a sedan.

E. Orientation of vehicles

To determine the orientation of the vehicles we implement
pretrianed yolo 3d to get the 3d bounding box of the car and
from that we got the rotation as alpha and omega and rotated
the vehicle based on the angle we got from the model. To
make the model work based on our needs we had to modify
the projection matrix with the intrinsic matrix of our camera
and the translation we assumed it to be 0. YOLO3D was not
that accurate in predicting the orientation of the vehicles. It was
only able to predict orientation when there was a huge change
in the orientation.

F. Break Light and Indicator

The image is loaded, and a car patch is extracted from the
image based on the bounding box dimensions provided by the
Detic. This region is converted to the HSV color space, and a
mask is created based on pixel intensity. After applying erosion
and dilation operations to refine the mask, contours are found
within the filtered region. These contours are drawn on the
original image, and their positions are adjusted relative to the
original image. By analyzing the distribution of contours on
either side of the region, the function classifies if brake lights,
or left indicators or right indicators are on or off. This approach
was not that accurate, it was only able to rightly predict the
break lights and indicators 50% of the times.

G. Optical Flow

Opticalflow is computed between two consecutive frames of
a video using the Farneback method provided by OpenCV. The

function takes two frames (frame1 and frame2) and a point of
interest (point) as input. It first converts the frames to grayscale
and initializes an array for storing the computed flow. It then
calculates the optical flow using cv2.calcOpticalFlowFarneback,
converts the flow vectors to magnitude and angle representa-
tions, and normalizes them. Afterward, it computes the dis-
placement of the specified point in the optical flow field and
determines whether the object at that point is moving or parked
based on a predefined threshold value. If the flow value is less
than 2 (trial and error), the object is classified as ’Moving’;
otherwise, it is classified as ’Parked’.
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Fig. 3. Black Vehicles are Moving and White Vehicles are Parked
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