
Einstein Vision
Computer Vision (RBE549) Project 3

Hrishikesh Pawar
MS Robotics Engineering

Worcester Polytechnic Institute
Email: hpawar@wpi.edu

Using 1 late day

Tejas Rane
MS Robotics Engineering

Worcester Polytechnic Institute
Email: turane@wpi.edu

Using 1 late day

Abstract—In this project, we aim to develop a visualization
system inspired by Tesla’s dashboard display. Utilizing video data
captured from the cameras of a 2023 Tesla Model S, our system
processes and renders visualizations highlighting key elements
essential such as lanes, vehicles, pedestrians, traffic lights, and
road signs.

I. PHASE 1: BASIC FEATURES

The primary objective of Phase 1 is identification of essen-
tial features within a given scene. This phase concentrated on
the recognition of the following elements:

• Lanes: Identifying different kinds of lanes on the road,
which could be dashed, solid and/or of different color
(white and yellow).

• Vehicles: Identifying all cars.
• Pedestrians: Identifying and locating pedestrians and

displaying them in the scene.
• Traffic Lights: Indicate the traffic signals and it’s color.
• Road Signs: Identifying the road signs, primarily the stop

sign.
The initial step of our processing pipeline involves sub-

sampling of undistorted video stream, wherein one key frame
is extracted for every 5 frames. These key frames, derived
from various video sequences, are then utilized as inputs to
the models.

Following steps were taken to execute the phase.

A. Depth Estimation from Monocular Images

The first step in the entire processing pipeline is to per-
form depth estimation from monocular RGB images. We use
Marigold1 for this task. Marigold generates relative depth from
monocular RGB images, which we scale to a factor such that
objects spawned in Blender look visually correct.

B. Lane Detection:

Lane detection was primarily conducted using the lanenet
model, which excels at identifying lane markings in images.
Despite its efficacy in detecting lanes, CLRNet lacks the
capability to classify the type of each lane. Our initial approach
was to generate masks from CLRNet and classify them using
DBSCAN. However, this approach proved to be not general-
ized. In our search for a better solution, we transitioned to a

1Marigold

Fig. 1: Depth Estimation from Monocular RGB Image. Top
shows the original image and Botoom shows the estimated
depth.

Mask RCNN model, which detected and classified lanes into
six different classes as follows:

• Divider line
• Dotted line
• Double line
• Random line

https://github.com/prs-eth/Marigold


• Road sign line
• Solid line
One observation we made was that the model provided

accurate results for most cases. However, it also produced
some false positives, as illustrated in Fig. 2 and Fig. 3.

Fig. 2: Lane Classifications Overview

Fig. 3: False Positive Detection

From the detected masks, our approach was to extract
control points for lane depiction. Specifically, we sampled on

the nth row across the image to determine the mean position
of lane markings within that row. This is achieved by iterating
over the binary mask of a detected lane at a specified sampling
rate. For each sampled row, we calculate the mean column
index of pixels classified as part of the lane. These mean
positions, representing averaged horizontal locations of lane
markings, serve as control points as seen in Fig 4. These
control points were then utilized as input for plotting Bezier
curves in Blender, providing a representation of lane paths.

Fig. 4: Lane Control Points

C. Vehicles, Pedestrians, and Traffic Lights Detection

The detection and segmentation of vehicles, pedestrians, and
traffic lights were accomplished using the YOLOv8 model.
The model was used to to recognize five vehicle subcategories:
Car, Bus, Truck, Bicycle, and Motorcycle. Similarly, the same
model was used to detect pedestrians, traffic lights, and road
signs. The outcomes of these detections can be seen in Fig. 5
and Fig. 6.

D. Integration and Visualization in Blender

The detections from both the Mask RCNN (for lane de-
tection) and YOLOv8 models were aggregated into a unified
JSON file format. This file encapsulates the coordinates of
detected objects, which are subsequently transformed into
Blender’s coordinate framework. Specifically, for the Yolov8
model the centroids of the bounding boxes, indicative of
the detected objects’ locations, were converted and used as
spawning points within Blender.

II. PHASE 2: ADVANCED FEATURES

Building upon Phase 1, Phase 2 aimed to introduce a
higher level of granularity. This phase focuses on the detailed
classification and subclassification of detected entities, the
incorporation of orientation data, and the visualization of these
elements within the rendered environment.



Fig. 5: YOLOv8 Object detection Outputs

Fig. 6: YOLOv8 Object detection Outputs

A. Vehicles

A classification regime was introduced to categorize vehi-
cles not only by type but also by specific subtypes. Addition-
ally, the orientation of each vehicle is determined. This is done
by estimating the 3D bounding box of the vehicle

B. Traffic Lights

Building upon the initial identification of traffic lights,
this phase incorporates the classification of directional arrows
present within traffic lights. We use YOLOv8 for this task.

C. Road Signs

In addition to the recognition of stop signs identified in the
previous phase, this phase extends to include the detection
of ground-level road signs, such as directional arrows and
speed limit indicators. We use YOLOv8 trained on the GLARE
dataset2 for this task.

2Glare Dataset

Fig. 7: YOLOv8 Object detection Outputs

Fig. 8: YOLOv8 Object detection Outputs

D. Additional Objects

The scope of detection is further expanded to encompass
various urban infrastructure elements, including dustbins, traf-
fic poles, cones, and cylinders. These objects are detected and
segmented using Detic3.

E. Pedestrian Pose

Identification of pedestrian pose was performed using
OSX4. OSX takes the RGB image as input and directly gen-
erates the Blender meshes as output. The generated mesh files
are then inserted in the corresponding scenes and rendered. Fig
11 shows the original RGB image and the generated Blender
mesh files.

III. PHASE 3: BELLS AND WHISTLES

This phase dives deeper into adding more cognitive abilities
for better decision making in the path planning stage of our
self-driving car. Mainly, we focus on understanding various
attributes of the vehicles in the environment, like the status of

3Detic
4OSX

https://github.com/NicholasCG/GLARE_Dataset
https://github.com/facebookresearch/Detic
https://github.com/IDEA-Research/OSX


Fig. 9: Detic Object detection Outputs (cones)

Fig. 10: Detic Object detection Outputs (trash cans)

their brake lights and turn indicators, as well as whether they
are moving or parked.

A. Brake lights and indicators of the other vehicles

The brake lights of the vehicles are detected and segmented
using Detic5. Then, we perform post-processing on these
segmented sections of the image to identify whether the brake
lights and turn indicators are on or off. The post-processing
steps are mentioned as follows:

• The first step is to classify the detected brake lights as on
or off. This is done by converting the segmented patches
to YCrCb color space and applying adaptive threshold
on the Y (luminance) channel.

• Then, the classified brake lights are assigned to the
corresponding vehicles, based on whether the detected
brake light lies within the detection bounding box of the
vehicle.

• Now, there are a few cases that might arise here. Based on
the accuracy of the detection model, there can be either
none, one or both brake light detection for the vehicle.

5Detic

Fig. 11: Original RGB image showing humans, and their
corresponding generated Blender meshes.

• In case of no detection, we assume that the brake lights
and indicators of the vehicle are off.

• In case of only one detection for the vehicle, depending
on the status of the detected brake light (on or off ), we
assume both the brake lights to be on or off.

• In case of both the brake lights being detected for the
vehicle, we can figure out all the possible cases. If both
are on, the brake lights are on, and vice versa. In case
only one of them is on, the vehicle has either the turn
left or the turn right indicator active.

B. Parked and moving vehicles
To differentiate between parked and moving vehicles, we

utilized optical flow analysis using the RAFT6 algorithm,
which generates monocular optical flow images showing rel-
ative flow between pixels. Increased flow rates are depicted
by intensified colors in these images. Initially, we tried using
the Sampson distance to identify moving vehicles based on
their higher flow rates. However, we faced a challenge where
vehicles in front, moving relatively slower compared to our
vehicle, were incorrectly identified as parked due to their
lower flow rates. To tackle this issue, we developed a multi-
step approach. Firstly, we assessed the net flow within each
bounding box provided by Detic7 and compared it with the
flow from neighboring regions. If the flow difference was
minimal, indicating limited movement of the object relative
to the scene, and if the net flow of the mask itself fell within
a specified range (suggesting that cars moving in the same
direction were below a certain threshold), we classified the
vehicle as parked. Additionally, to account for our vehicle’s
motion, we employed flow subtraction using a Gaussian mask,
with the mask’s variance proportional to the variance of flow
in the image. This method enabled us to more accurately
distinguish between parked and moving vehicles.

IV. CONCLUSIONS AND DISCUSSIONS

In this project, we get a taste of implementing the dashboard
visualizations for a self driving vehicle. We use various pre-
trained models for self-driving tasks like depth estimation,

6RAFT
7Detic

https://github.com/facebookresearch/Detic
https://github.com/princeton-vl/RAFT
https://github.com/facebookresearch/Detic


Fig. 12: Detected parked and moving cars, with their motion
directions

Vehicle and road-side objects detection, lane classification,
human pose estimation and optical flow on the data provided
from a Tesla Model S. Based on the detection and segmen-
tation results of all these models, the corresponding objects
are spawned in Blender so as to simulate the movement of
these objects in the environment as the self driving car moves
through it. For this project due to interest of time we had to
rely on existing pre-trained models. However, if this needs
to be deployed on an actual self-driving car in the future we
must train our own custom model with a large dataset, which
can perform multiple such tasks in parallel. The Hydra-Net
architecture deployed by Tesla is one such example, where
the model shares a common backbone (feature extractor) and
there are multiple heads to segment and detect multiple objects
in parallel.

Fig. 13: Original Image, and its optical flow.



Fig. 14: Rendered Output of different scenarios (1/3). From Top: (1) Generic Rendered scene, (2) Cones and Arrows on traffic
lights, (3) Motor Cycle, (4) Signs painted on the road.



Fig. 15: Rendered Output of different scenarios (2/3). From Top: (1) Humans in different poses, (2) Trash cans, (3) Stop sign,
(4) Traffic Light.



Fig. 16: Rendered Output of different scenarios (3/3). From Top: (1) Different types of lanes, (2) Traffic Cylinders.


	Phase 1: Basic Features
	Depth Estimation from Monocular Images
	Lane Detection:
	Vehicles, Pedestrians, and Traffic Lights Detection
	Integration and Visualization in Blender

	Phase 2: Advanced Features
	Vehicles
	Traffic Lights
	Road Signs
	Additional Objects
	Pedestrian Pose

	Phase 3: Bells and Whistles
	Brake lights and indicators of the other vehicles
	Parked and moving vehicles

	Conclusions and Discussions

