
Project 3 - EinsteinVision
Manoj Velmurugan∗, Rishabh Singh†

Robotics Engineering
Worcester Polytechnic Institute

Email: ∗v.manoj1996@gmail.com, †rsingh8@wpi.edu

Abstract—In our project, we employed various deep learning
models to detect cars, humans, their poses, lanes, and depth
in images. These detections were then transformed into 3D
coordinate space by using monocular depth. We developed a
Blender python API based script to visualize these 3D detections,
enabling a comprehensive and interactive representation of the
data. The aim of the project to have a visually pleasing, yet
informative display for a self driving car.

I. DEPTH ESTIMATION

In the broader scope of our project, while we successfully
deployed various models to detect different elements within
our scenes, these detections were constrained to 2D image
coordinates, lacking the depth information needed for a re-
alistic 3D visualization. We don’t really need depth to scale
since this is just for visualization. Our search led us to adopt
Depth Anything, which stood out for its exceptional accuracy
in generating depth data. To capture depth information with
the highest possible fidelity, we wrote a script capable of
producing high-resolution, 16-bit grayscale depth frames for
each scene. This approach ensured we could extract detailed
depth information, enriching our 2D detections with a sem-
blance of three-dimensionality. Utilizing the camera’s intrinsic
parameters, we then converted this depth data into actual 3D
coordinates for each detection. This process allowed us to
accurately position and render each detected element within
our Blender visualizations, significantly enhancing the realism
and utility of our project’s outputs.

Given a pixel (u, v) in the image plane and its corresponding
depth Z, the 3D coordinates (X,Y, Z) in the camera coordi-
nate system can be calculated as follows:

X =
(u− cx) · Z

fx
,

Y =
(v − cy) · Z

fy
,

Z = Z

(1)

where:
• u, v are the pixel coordinates in the image plane.
• cx, cy are the coordinates of the principal point (usually

the optical center of the image).
• fx, fy are the focal lengths expressed in pixel units.
• Z is the depth of the object from the camera.

II. DETECTING LANES

In order to accurately detect lanes within diverse driving
environments, we initially deployed CLRnet. However, this

Fig. 1: Monocular Unscaled Depth

model demonstrated significant limitations, struggling with
varying lighting conditions and being overly sensitive to color
nuances. Despite several attempts to mitigate these issues
through white balance correction, the use of monochrome
video, and other image preprocessing techniques, CLRnet’s
performance remained suboptimal, failing to consistently rec-
ognize lane markings. Consequently, we pivoted to the Mask
R-CNN lane detection model, which markedly improved our
detection capabilities. This model not only identifies lanes
but also provides detailed outputs including bounding boxes,
segmentation masks, and classification IDs that distinguish
between different types of lanes such as dotted or straight. To
further refine our data, we fitted a second-order polynomial
within the segmentation mask of each detected lane. This
allowed us to generate a series of equidistant points along
these polynomials, which we could then accurately plot in
Blender. This approach not only improved the precision of
our lane detection but also enhanced the visual representation
of lanes in our 3D environment, complete with their specific
classifications.

III. OBJECT DETECTION

Our project required the identification of a wide array of
objects, including traffic cones, traffic lights, cars, and humans,
among others. Initially, we deployed YOLOv8, trained on the
COCO dataset known for its speed and accuracy. However,
we encountered a limitation in its pre-defined class categories,



Algorithm 1 Lane Detection and Polynomial Fitting

Initialize Mask R-CNN model with pre-trained weights
for each frame in video do

Apply Mask R-CNN model to detect lanes
Extract bounding boxes, segmentation masks, and class

IDs
for each detected lane do

Extract segmentation mask for current lane
Fit a 2nd order polynomial f(y) = ay2 + by + c to

the mask
Calculate lane length and divide into 10 equal seg-

ments
Initialize list P for points
for i = 1 to 10 do

Calculate yi as the i-th equidistant point on lane
Calculate xi = f(yi)
Append (xi, yi) to P

end for
end for

end for

Fig. 2: Lane Detection with custom overlay

which did not encompass the full range of objects relevant to
our application.

In search of a different solution, we transitioned to using
Facebook’s Detic, a model known for its extensive range of
detectable classes. Detic significantly broadened our detection
capabilities, covering every category of interest to our project.
Despite our efforts, we faced challenges in further subclassify-
ing cars into more specific types, such as SUVs or sedans, due
to the absence of readily available pre-trained models tailored
for such detailed classification.

Nevertheless, Detic empowered us to accurately identify
and classify a comprehensive list of objects including cars,
humans, traffic cones, traffic lights, and road signs, along
with bounding boxes and confidence scores. Armed with
this detailed object detection data, coupled with the depth
information we had previously obtained, we were able to plot

these detections in 3D with good accuracy.

Fig. 3: Detic mask output, showing cars, trucks, traffic cones

IV. CAR POSE

While our initial implementation of YOLO and Detic mod-
els nicely detected cars by providing 2D bounding boxes,
we faced the challenge of lacking 3D orientation data for
these vehicles. This dimension of data is crucial for accu-
rately representing moving cars and their dynamics within
our 3D visualizations. To overcome this limitation, we use
the OpenPifPaf car keypoint model, which is trained on the
ApolloCar3D Dataset. This model delivers precise keypoint
detection for vehicles, marking critical points that define their
structure and orientation.

Leveraging the depth information we had gathered, we were
able to transform these 2D keypoints into 3D pose estimates
with good accuracy. These pose estimates provide detailed
spatial positioning for various parts of each car, enabling us
to understand not just the location but also the orientation and
movement direction of vehicles in the scene.

To visually represent these findings with fidelity in our 3D
environment, we mapped the 3D pose estimates to Blender
models of vehicles.

Later we found that the bounding box were not very accu-
rate for this model. So we matched the centroid of the detected
car bounding boxes, with th centroid of the bounding boxes
given by detic bu using simple euclidean norm. This gave us a
more precise bounding box along with good keypoints inside.

For estimating the pose, we posed the problem as a least
squares problem. A standard car model was taken in blender
and the worldpoints for every keypoint was measured. The car
in the real scenario is assumed to be a rotated in yaw, translated
and scaled version of our standard car model. Rotation can be
expressed as eiϕ for linearizing the problem. This algorithm
works really well even if only 3 keypoints are detected on the
car as shown in Fig. 5. It works when the complete bounding
box is absent or only part of the is visible.



Fig. 4: Car Pose showing detected various key points

Fig. 5: Cars detected in scene with correct orientation

V. HUMAN POSE

For detecting human poses within our scenes, we utilized the
same OpenPifPaf network, trained on the COCO dataset. This
allowed us to acquire detailed keypoints and bounding boxes
for each detected human figure. By leveraging these keypoints,
we could map each detected human pose onto corresponding
models in Blender with high fidelity.

Fig. 6: Human Pose detected on Cycle

VI. TRAFFIC LIGHT AND TAIL LIGHT DETECTION

Leveraging the car pose data obtained from OpenPifPaf,
we were able to identify the tail lights of each vehicle. Addi-
tionally, Detic’s provided us with accurate locations of traffic

lights within our scenes. However, a key piece of information
was missing from our dataset: the specific color within these
detected bounding boxes, which is vital for understanding
signaling and traffic flow.

To address this challenge, we developed a method to seg-
ment out the bounding box of each tail light and traffic light,
calculating an average HSV (Hue, Saturation, Value) value for
the area. We then applied a thresholded HSV mask to figure
out the color changes within these segments. This approach
enabled us to distinguish between different states of traffic
lights and identify when a car’s tail lights were activated,
indicating braking or turning.

To facilitate the ”tuning” process of optimal HSV thresholds
for each unique scene, we created a specialized tool that
allowed for the manual adjustment of HSV values through
sliders.

For traffic light we followed the exact same approach.

VII. SPEED BUMP DETECTION

We detected speed bump by using Detic to detect the speed
bump sign next to it and then just put a custom cylindrical
object next to it.

Fig. 7: Speed bump

VIII. BLENDER OUTPUT



Fig. 8: Custom made HSV tuning tool

Fig. 9: ”ON or OFF” visualization created to test our thresh-
olds of detected tail light bounding box

Fig. 10: Blender Highway Scene

Fig. 11: Brake Lights

Fig. 12: Indicator



Fig. 13: Object Detected

Fig. 14: Stop Sign

Fig. 15: Cycle with human as seen in Figure 6

Fig. 16: Curved Lane



Fig. 17: Traffic Light


