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Abstract—For this phase of Project 2, the objective is the
replication of the original implementation of Neural Radiance
Fields. Given multiple images of two objects from different views,
the goal is to render a three-dimensional scene representation of
the same. The network architecture used, along with the obtained
results is discussed in this report.

INTRODUCTION

Neural Radiance Fields by Mildenhall et al. [I] is one
such work that took the world by storm. From a set of 2D
images, this neural network enables 3D reconstruction of the
scene, essentially synthesizing novel and moderately realistic
views. Given a sparse set of input images, the goal is to
generate volume density and view-dependent emitted radiance
by optimizing the underlying continuous volumetric scene
function). This is well-captured in the image provided below
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Fig. 1. Overview of NeRF functionality

A multilayer perception is used to approximate this function
discussed above, as opposed to using conventional layers.
To visualize or render the output Neural radiance fields, the
camera rays are passed through the scene to generate 3D
points. With these points along with the viewing directions
passed as input to the network, the volume density with RGB
values is obtained, after which classical volume rendering
methods are employed to generate a viewable output.

As part of this project, the lego set and the ship data set used
in the original set is to be fed to the network for training and
then rendering a complete view of these objects. The crucial
points of discussion to be followed in further sections, are
given below.

o The employed network architecture used for the imple-

mentation

« Results obtained using the dataset from the implemented

model along with challenges faced during the process
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o Testing the performance of the model on a dataset curated
by us

NETWORK ARCHITECTURE
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Fig. 2. Network architecture of implemented NeRF

Above is the model architecture implemented for this
project, inspired from the Nerf-PyTorch repository. The archi-
tecture has 8 layers where the first layer inputs the encoded ray
sample of size (3 + 3*2%*n¢,coders) and uses a filter of size
256. The next 2 hidden layers are convolved with the filter
size 256. In the 4" layer, the input is concatenated with the



output of the 3rd layer. The next 3 layers are convolved with
fully connected layer of filter size 256,256,128 respectively.
The final layer is a fully connected layer which produces the
R,G,B, and « channel values.

Furthermore, a tinyNeRF model architecture has also been
implemented which helps to verify the feasibility of the data
generation and to ensure faster yet feasible results. The tiny
nerf has 3 layers the last being the fully connected layer, which
can be seen in the figure below.
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Fig. 3. Network architecure of tinyNeRF

RESULTS AND DISCUSSION

The paper exercises NeRF model in pytorch and tries to
compute it for different NeRF datasets. There are 4 datasets
namely Lego-encoded, Lego-without encoded, ship and a
custom data. The training is done for 10,000 epochs with
sample ray size of 1024 and batch size of 32. The lego model
has been trained with psoitonal encoding and without position
encoding. For training, the PSNR loss function for each dataset
is plotted.

Coming to the test results, the PSNR and SSIM error have
been plotted and the average has been tabulated to know the
feasibility of the network. A .gif file has been rendered using
the image writer function.

Compared to unencoded, encoding is done in Fourier space.
Hence it has better results.

Fig. 4. Training Images- Lego Encoded

Fig. 5. Training Images- Lego Encoded
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Fig. 6. Training PSNR - Lego Encoded

T
10000




Fig. 10. Training Images- Ship
Fig. 7. Training Images- Lego Encoded
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Fig. 8. Testing Output- Lego Encoded
Fig. 11. Training PSNR - Ship

Fig. 9. Training Images- Ship Fig. 12. Training Images- Ship



Fig. 13. Testing Output- Ship

Fig. 14. Training Images- Lego Not Encoded
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Fig. 16. Training PSNR - Lego Not Encoded

Fig. 17. Training Images- Lego Not Encoded
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Fig. 15. Training Images- Lego Not Encoded

Fig. 18. Testing Output- Lego Not Encoded



Mean PSNR | Mean SSIM
Lego encoded 15.6 0.69
Lego unencoded 13.2 0.76
Ship encoded 15.2 0.55
Custom 10 0.4
TABLE T

NERF ON CUSTOM DATASET

As part of extra credit, the same procedure used for syn-
thesising novel views around LEGO miniature bulldozer and
miniature ship is to be done on a custom dataset. A plushie
of Piplup (product of Pokémon) is considered for the same,
sample images of which are displayed below. To this extent, a
total of 145 images of Piplup is captured to render a complete
360° view of it. This was done on OnePlus 7T camera with the
following settings in place (focal length: 4.76mm, Aperture:
/1.6, Exposure time: 1/25, ISO: 100)

Fig. 19. Pictures from Custom Dataset - Piplup (Pokémon)

Given below is the procedure used to obtain the ground
truth for training our NeRF model.

o After the photo capture, ensuring the object is in focus
and has enough illumination

o Feature extraction and Feature matching with all the
images on COLMAP [2]

e Sparse reconstruction and Bundle Adjustment on
COLMAP with some tweak in settings to obtain nominal
results

o Export the model data (camera poses) to extract the
camera intrinsics and extrinsics though colmap2nerf.py
from Instant NGP [3] in the form of transforms.json file
as in LEGO and Ship dataset

Following this procedure detailed above, helped to obtain
the camera poses. This is given in the figure below. During
this process, some challenges were faced while performing
reconstruction which include - a) imperfect focus that led
to issues during reconstruction (only part of the model was

reconstructed), b) lighting conditions which led to part of the
model missing during background removal, and c¢) generated
quality in the COLMAP setting was reduced from High to
Medium along with tweaking of settings such as triangulation.
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Fig. 20. 3D Reconstruction on COLMAP with camera poses used to take the
pictures

The images along with generated transforms.json file is
uploaded in this link. The test results for this custom dataset
is provided below in the form of generated frames and PSNR
values.

o o

2 2

w0 w0

o 2 @ w0 o 0 2 4w e o

o o
20 20
w @
& &
% %

0 0 @ 6 & o @ 6@ w0

Fig. 21. Training Images- Custom


https://drive.google.com/drive/u/1/folders/1erbSgp5oe5-_M5_ZDH5EKFv4tbiSj_IN
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Fig. 22. Training Images- Custom
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Fig. 23. Training PSNR - Custom
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