
RBE 549 Computer Vision Project 2 - NeRF
Kaushik Kavuri Subrahmanya

Robotics Engineering
Worcester Polytechnic Institute
Worcester, Massachusetts 01609
Email: ksubrahmanya@wpi.edu

Butchi Adari Venkatesh
Robotics Engineering

Worcester Polytechnic Institute
Worcester, Massachusetts 01609

Email: badari@wpi.edu

Abstract—In this project, we implement the original NeRF
method to render scenes of objects with complicated geometries
and appearance.

I. DATASET

This approach takes 5D coordinates viz. spatial location (x,
y, z) and viewing direction (θ, ϕ)) as input and the output is
the volume density and view-dependent emitted radiance at
that spatial location. To train the model, we use the same 100
images of a LEGO piece, and a pirate ship piece provided
by the original authors of the paper. These images capture
the object from various poses all around the object. The
corresponding poses for each of the images are also provided
in the same source.

Fig. 1: Input and Output of NeRF

A. Network Architecture and Pipeline

The architecture used in NeRF is a multi-layer perceptron
(MLP). The MLP uses ReLU activation for each layer and
Adam optimizer is used. There are 8 fully connected layers
with 256 channels in each layer. In NeRF, positional encoding
plays a crucial role in capturing spatial information about the
scene’s geometry and viewpoint directions.

1. Input Representation: NeRF takes as input the 3D points
sampled along camera rays in the scene and corresponding
viewing directions or viewpoints. Each point’s 3D coordinates
(x, y, z) and viewing directions (θ, ϕ) are encoded using
positional encoding to capture spatial information effectively.

2. Positonal Encoding: Positional encoding involves the
use of sinusoidal functions to encode the spatial coordinates
(x, y, z) and viewing directions (θ, ϕ). These sinusoidal en-
codings enable the neural network to understand the geometric
relationships between different points in the scene and viewing
directions. Stored as γ(63) and γ(27).

3. Neural Network Architecture: The positional encoded
inputs are then fed into a neural network architecture, typically
consisting of multiple fully connected layers. These layers
process the encoded inputs to predict radiance values (RGB
color and opacity) for each input point in the scene.

4. Training Objective: NeRF is trained to minimize the
discrepancy between the predicted radiance values and ground
truth values observed from known viewpoints in the scene.
This training objective allows the network to learn an accurate
representation of the scene’s geometry and appearance.

5. Rendering Novel Views: Once trained, the NeRF model
can synthesize novel views of the scene by evaluating the
volumetric scene function at different viewpoints. By lever-
aging the learned spatial representations encoded through po-
sitional encoding, NeRF can generate high-quality renderings
of scenes from arbitrary viewpoints.

Fig. 2: NeRF Architecture

B. Challenges and Workarounds

1) Out of Memory: While training the model, we ran into
CUDA out-of-memory issue. To solve this, we only loaded
images into the GPU in batches, and only when necessary,
instead of storing all of them throughout the process. In
addition, we also stopped loading unnecessary variables into
the GPU.

2) Training Time: As the training time required to train was
very high, we resized all of the input images to 400*400px
sized images. This significantly reduced the time to train the
model at the cost of reduced quality of output. We initially
resized the images to 100*100px but the reduction in quality
was extremely high and the results were quite unsatisfactory.



Fig. 3: LEGO - Ground Truth and NeRF prediction without
positional encoding at 20k iterations

C. Results

Ground truth vs NeRF outputs with and without positional
encoding are given in Figs. 3 - 5.

Mode Loss PSNR Loss SSIM
Train 7e-4 31.2 -
Test .5e-03 28.4 .95

TABLE I: NeRF Loss at 100k iterations

Fig. 4: LEGO - Ground Truth and NeRF prediction using
positional encoding at 100k iterations



Fig. 5: Ground Truth

Fig. 6: NeRF Prediction

Fig. 7: Ship - Ground Truth and NeRF prediction using
positional encoding at 100k iterations

Fig. 8: Loss and PSNR per iteration for Train set

Fig. 9: Loss, PSNR and SSIM per iteration for Test set

II. CONCLUSION

As we can see, the NeRF outputs are close to the input
images. A better output would require us not to resize the
images, but the time to train the model would also greatly
increase.

ACKNOWLEDGMENT

The authors would like to thank the professor for the
instructions and knowledge imparted via the course.


