
P2 - Building Built In Minutes: SfM and NeRF
Mihir Deshmukh

Robotics Engineering
Worcester Polytechnic Institute
Email: mpdeshmukh@wpi.edu

Ashwin Disa
Robotics Engineering

Worcester Polytechnic Institute
Email: amdisa@wpi.edu

Abstract—In this project assignment, we reconstruct a 3D scene
and simultaneously obtain the camera poses of a monocular
camera with respect to the given scene also known as Structure
from Motion. We create the rigid structure from a set of images
with different view points. For the second phase we implement
the famous NeRF (Reural Radiance Fields) for synthesizing novel
views of complex scenes by optimizing an underlying continuous
volumetric scene function using a sparse set of input views.

I. PHASE 1: STRUCTURE FROM MOTION

A. Dataset

We are given with a set of 5 images of Unity Hall at WPI as
shown in fig. 1, using a Samsung S22 Ultra’s primary camera
at f/1.8 aperture, ISO 50 and 1/500 sec shutter speed. The
camera is calibrated after resizing using a Radial-Tangential
model with 2 radial parameters and one tangential parameter
using the MATLAB R2022a’s Camera Calibrator Applica-
tion beforehand. The images provided are already distortion-
corrected and resized to 800× 600px.

Fig. 1. Dataset.

B. Feature Matching, estimating fundamental matrix and
RANSAC

We are also given matched features. We reject the outliers
from the same set using RANSAC. We do so using an estima-
tion of the fundamental matrix, which is based on the epipolar
constraint given by xT

i Fxi = 0. F is 3× 3 matrix, which we
get by solving a homogeneous linear system Ax = 0 with
nine unknowns applying the Singular Value Decomposition
(SVD). We do so by taking eight random points from the
pool of matches and estimating a rough F matrix, computing
the epipolar constraint, and comparing it with a threshold
value. We then estimate the final F matrix using the inliers
from RANSAC. We utilize the inliers from cv2 for a more
robust result but our Ransac inliers implementation also works
effectively. Due to noise in the matches, the estimated F matrix
can be of rank three i.e. σ9 ̸= 0. So, to enforce the rank two
constraint, the last singular value of the estimated F is set to
zero. This also results in all the epipolar lines intersecting at
a single point known as the epipole. The epipolar lines for a

pair of images are shown in Fig. 2. The epipole is the other
camera position in the first image frame; hence, the point is
not visible in the image.

Fig. 2. Epipolar lines for a pair of images.

The final F matrix we got is shown below:

Ffinal =

−1.607e− 07 −3.011e− 05 1.343e− 02
3.266e− 05 3.202e− 06 −3.486e− 02
−1.518e− 02 3.304e− 02 1.000e+ 00


C. Estimate Essential Matrix from Fundamental Matrix

The essential matrix is another 3× 3 matrix, but with some
additional properties that relate the corresponding points,
assuming that the cameras obey the pinhole model. The
matrix is given by E = KTFK, where K is the camera
intrinsic matrix. E is reconstructed with (1, 1, 0) singular
values due to the noise in K given by E = USV T , where
S is a diagonal matrix with the given singular values. The
estimated Essential matrix is given by:

Efinal =

−9.666e− 05 −5.827e− 01 1.395e− 01
6.355e− 01 5.369e− 02 −7.511e− 01
−1.880e− 01 7.960e− 01 2.791e− 02


D. Estimate Camera Pose from Essential Matrix

The camera pose consists of 6 DOF, Rotation (Roll, Pitch,
Yaw), and Translation (X,Y, Z) of the camera with respect to
the world. The camera pose is estimated from P = KR[I3×3−
C]. These four pose configurations can be computed from E

matrix where E = UDV T , and W =

0 −1 0
1 0 0
0 0 1


. The four configurations are C1 = U(:, 3) and R1 = UWV T ,
C2 = −U(:, 3) and R2 = UWV T , C3 = U(:, 3) and
R3 = UWTV T , C4 = −U(:, 3) and R4 = UWTV T . Also if



det(R) = −1, the camera pose is corrected i.e C = −C and
R = −R.

E. Triangulation Check for Cheirality Condition

We found four camera poses by decomposing the Essential
matrix. Only one of them is accurate. We triangulate the 3D
points given any two camera poses and the matched features
and plot all the 3D points as shown in 3. We disambiguate
the camera poses by checking the cheirality constraint, which
determines if the point is behind the camera. We triangulate
the 3D points using linear least squares to check the sign of the
depth Z in the camera coordinate system w.r.t. camera center.
A 3D point X is in front of the camera r3(X − C) > 0
where r3 is the third row of the rotation matrix (z-axis of the
camera). The pose with the most number of points satisfying
the constraint is the true camera pose. Now that we have the
camera pose configurations and their linear triangulated points.

Fig. 3. Triangulated 3D points from 2 camera poses.

To better estimate the triangulated points, we solve a nonlin-
ear minimization problem. The located triangulated points, X ,
are considered as the initial guess for the problem where we try
to minimize the reprojection error. We solve using nonlinear
optimization function scipy.optimize.least squares(). The
results are compared with the linear triangulation, which is
shown in Fig. 4.

F. Perspective-n-points

With the world points from nonlinear triangulation, intrinsic
parameters, and common points, the camera poses are esti-
mated using LinearPnP. Here, we again get a linear equation
and solve it using SVD to get the projection matrix. The
rotation and camera poses are extracted from the same matrix.
The estimation may not be accurate due to underlying outliers
that were removed using PnPRANSAC. The reprojection error
is minimized using nonlinear PnP using least squares. The
camera poses and all world points are shown in Fig. 7.

The reprojection errors are listed in the following table.

Fig. 4. Linear and nonlinear triangulated 3D points from 2 camera poses.

Fig. 5. Reprojected points after linear triangulation.

Error
Linear reprojection 6.8731
Nonlinear reprojec-
tion

6.840

Linear PnP (1,3) 777.91
Nonlinear PnP (1,3) 726.17
Linear PnP (1,4) 19.44
Nonlinear PnP (1,4) 7.486
Linear PnP (1,5) 44.71
Nonlinear PnP (1,5) 3.613

G. Visibility matrix and bundle adjustment

We create a visibility matrix for the given number of
cameras and total world points. The function initializes the
matrix with zeros and iterates over each world point and
camera to mark the visibility of the world point in each
camera. Fig. 8 shows the Visibility matrix size and how each
column shows if a world point is visible in each of the camera
view. Next, we use bundle adjustment to reduce the projection
error simultaneously for all the 5 images using this visibility
matrix. Bundle adjustment takes input parameters related to
camera poses, 3D points, visibility, and intrinsic matrix and
uses least squares optimization to refine the camera poses
and 3D points. The function returns the optimized camera



Fig. 6. Reprojected points after nonlinear triangulation.

Fig. 7. Camera poses after nonlinear PnP.

poses and 3D points. This is shown in 9, which shows bundle
adjustment for all the camera views.

Fig. 8. Visibility matrix size and Sample entries.

Fig. 9. Camera poses and world points after bundle adjustment.



II. PHASE: 2 DEEP LEARNING APPROACH

We implement the NeRF model as mentioned in the paper
which is a method for representing 3D scenes by being able
to synthesize novel views after optimizing the network using
a sparse set of input views.

Fig. 10. Model Architecture.

A. DataSet

We use the dataset given by the original authors of the paper.
A parser function reads data from a JSON file, processes the

Fig. 11. Ray Directions from the origin in world frame.

data to load images and their related information, and prepares
the data for further processing. It returns information about
the camera, images, poses, and camera information like focal
length, and similarly for the test data.

B. Pixel to Ray

We use a pinhole model of a camera and with the given
information such as the camera matrix and the transformation
between the camera pose and world frame to estimate the ray
origin and unit vector along the ray direction. NeRF requires
rays from each pixel of the image. The number of rays for each
image is equal to the number of pixels in the image, in our
case we reduce the 800× 800 image into 400× 400, totaling
to e number of rays for each image is equal to the number
of pixels in the image, in our case we reduce the 800 × 800
image into 400 × 400, totaling 160000 rays per image. An
illustration of one such set of rays from an image is shown in
Fig. 11.

C. Volume Rendering

The model outputs the RGB and volume density for dif-
ferent samples along the rays. For each sample point along
each ray, we query the NeRF model to obtain color and
density values at these points and then apply volume rendering
techniques to compute the final RGB image. The volume
rendering process involves computing alpha values based on
density and distance, which are then used to calculate weights
for RGB. These weights are utilized to blend the sampled
colors along the rays, resulting in the RGB map representing
the rendered image.

D. Model Architecture

We adopted the same architecture as given in the paper
which consists of 8 fully connected layers. We also include



a skip connection that concatenates this input to the fifth
layer’s activation. After the next four fully connected layers
we extract the sigma output and the feature map. This feature
vector is concatenated with the positional encoding of the input
viewing direction (γ(d)) and is processed by an additional
fully connected ReLU layer with 128 channels. A final layer
(with a sigmoid activation) outputs the emitted RGB radiance
at position x, as viewed by a ray with direction d. The position
encoding lengths were set to 10 and 4 each for ray query
points and ray directions respectively following the original
implementation. The model architecture is shown in Fig. 10.

E. Training

For training, we first generate all the rays associated with
all the images in the dataset. Then, 4096 (batch size) number

of rays are sampled randomly from the whole dataset. This
ensures rays from multiple viewpoints go in during training in
one batch thus preventing the model from overfitting to one
image. The training of 80000 iterations took about 6 hours
to complete for each dataset with Pytorch automatic mixed
precision turned on for memory efficiency.

We use the following hyperparameters for training NeRF:

• No of iterations: 80000
• Learning Rate: 5e−4

• Optimizer: Adam (Default beta values)
• T near: 2
• T far: 6
• Batch size: 4096
• Number of query points per ray: 192

Fig. 12. Original and predicted image for Lego and Ship dataset.



F. Results

The best models were from the 53800 iterations for the Lego
set and 58100 iterations for the ship dataset. Following are the
PSNR and SSIM of the trained model on the test set.

1) Lego test set:
• Average PSNR: 25.51
• Average SSIM: 0.883

2) Ship test set:
• Average PSNR: 26.95
• Average SSIM: 0.832

1) Result Analysis: The results look pretty good after
training as evidenced by the results shown in Fig. 12. The GIFs
for both models are attached with the submission. Some novel
views do perform better which have better illumination. This
can be clearly seen in both models with brighter perspective
outputs doing much better as we get a higher SSIM.

The finer details on the lego as well as the ship are not
as clear as the original image. We also need to incorporate
hierarchical sampling to get finer details as explained in the
original NeRF paper. Also, training for even more number of
iterations will help improve the model performance.

2) Without Position Encoding: Our model didn’t converge
without the positional encoding. We tried multiple lower as
well as higher learning rates as well as the number of query
points along the rays but the loss kept constant. The output
was just a black image with no information.

III. REFERENCE

B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, and R. Ng, “NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis.” arXiv, 2020. doi:
10.48550/ARXIV.2003.08934.


