
P2: Building Built in Minutes: NeRF (Phase 2)
1st Venkateshkrishna
Masters in Robotics

Worcester Polytechnic Institute
Worcester, MA 01609
vparsuram@wpi.edu

2nd Mayank, Bansal
Masters in Robotics

Worcester Polytechnic Institute
Worcester, MA 01609

mbansal1@wpi.edu

I. PHASE 2: DEEP LEARNING APPROACH

A. Introduction

NeRF has introduced a transformative approach in the repre-
sentation of 3D scenes, allowing for the creation of new view-
points of intricate scenes by refining an underlying continuous
volumetric scene function from a select few input views. This
technique employs a fully connected neural network to depict
a scene, where the network receives a singular continuous
5D coordinate—encompassing spatial position (x, y, z) and
viewing direction (θ, ψ)—as its input. It then returns the
volume density and RGB color values corresponding to that
specific viewing direction as output.

B. Input Data

The official Lego and Ship dataset for NeRF, which is freely
accessible on the University of Berkeley’s website, is utilized.
Moreover, spatial positions (x, y, z) and viewing directions
(θ, ψ) are included. Despite NeRF being a deep learning
methodology, it incorporates traditional techniques on the data
prior to inputting it into the network.

C. Generation of Rays

In this methodology, we employ the traditional technique of
volume rendering, interpreting every pixel within an image as
a ray emanating into the 3D environment. Initially, the process
involves converting the pixel coordinates (u, v) to normalized
coordinates (X,Y, 1), relative to the camera’s center.

The equation for a generic ray is expressed as:

r(t) = o+ td

where o denotes the ray’s origin, corresponding to the position
of the image pixel within the 3D space, d indicates the ray’s
direction (a unit vector leading from the camera’s center to
the image pixel), and t serves as a scalar parameter. While t
is conceptually continuous, for practical implementation, it is
sampled at discrete intervals.

Given that the direction of the ray is initially specified
in relation to the camera’s framework, we implement the
rotation matrix that aligns with the camera-to-world rotation,
as specified by the transformation matrix. This adjustment
provides us with the direction of the ray in world coordinates,
which is subsequently normalized to a unit vector.

D. Point Sampling in the ray

Points are sampled along the ray to acquire values that
serve as inputs for our model. While linear sampling has been
utilized, the method proves to be compatible with non-linear
sampling too. Furthermore, a slight perturbation is introduced
to the sampling positions, exposing the network to new data
points and consequently improving the results.

E. Positional and Directional Encodings

Directly feeding the network with the coordinates of points
typically leads to suboptimal performance, observable even
when processing a solitary image. This issue arises due to the
network’s inclination towards assimilating predominantly low-
frequency features while neglecting the high-frequency details.
To mitigate this, positional encodings are employed, where the
sines and cosines of the point coordinates, calculated across a
spectrum of frequencies, are supplied to the network in lieu of
the raw coordinates. In a similar vein, for directional inputs, an
approach known as Directional Encodings is utilized, which
incorporates the sines and cosines of the directional inputs at
various frequencies.

F. Volumetric Rendering

The NeRF network produces RGB colors and volume
density as outputs for specified spatial and directional inputs.
These outputs are integrated using a volume rendering equa-
tion to derive the color values at particular points in world
space. The equation employed is outlined as follows:

C ≈
N∑
i=1

Tiαici

In this context, Ti denotes the weights, and ci signifies the
colors.

The weights Ti are calculated through:

Ti =

i−1∏
j=1

(1− αj)

while αi is given by:

αi = 1− e−σiδti

To determine the overall transmittance to a particular sam-
ple, we utilize the density values, which are then applied
alongside the RGB colors at that location to compute the



Fig. 1: NeRF Architecture

Fig. 2: Training Loss for Lego dataset

ultimate color values in the resulting image. This method is
applied uniformly across all sampling points on every ray,
thereby constituting what is known as the radiance field.

G. NeRF: Network

The actual network involves fully connected networks
(Multi-Layer Perceptron) with the inputs being positional and
directional encodings and the outputs being the density and
the RGB values. The network involves skipped connection to
obtain more accurate results. The network involves ReLU and
Sigmoid activations. The architecture for NeRF can be seen
in Fig. .

H. Network Parameters

The network parameters are:
• Input image size = 100x100
• near distance = 2
• far distance = 6
• Number of spatial samples per ray = 64
• Learning rate = 5e-4
• Number of encoding functions for samples = 10
• Loss function to be minimized: Log of mean-squared loss

between predicted image (RGB values) and the actual
image values

I. Results

PSNR SSIM
Lego with positional encoding 23.5 0.84
Lego without positional encoding 18.0 0.66
Ship with positional encoding 24.0 0.73

TABLE I: Comparison of PSNR and SSIM Values

Fig. 3: PSNR for Lego dataset

Fig. 4: PSNR for Lego dataset without positional encoding

J. Conclusion

Given the constraints of our computational resources, as
well as the scaled-down network design and diminished image
dimensions employed, we secured satisfactory outcomes, with
the 3D model being clearly observable. While the original
NeRF architecture has been successfully integrated into our
codebase, these limitations necessitated the adoption of the
aforementioned smaller-scale network. Employing the compre-
hensive network model in conjunction with the original image
sizes would likely yield enhanced results that more accurately
mirror the actual scenario.

Fig. 5: Training Loss for Ship dataset



Fig. 6: PSNR for Ship dataset

Fig. 7: Comparison of Lego generated image with positional
encoding with the ground-truth test image

REFERENCES

[1] Building Build in Minutes-NeRF: link

Fig. 8: Comparison of Lego generated image without posi-
tional encoding with the ground-truth test image

Fig. 9: Comparison of Ship generated image with the ground-
truth test image

Fig. 10: Novel synthesised view of Lego with positional
encoding

https://rbe549.github.io/spring2024/proj/p2/


Fig. 11: Novel synthesised view of Lego without positional
encoding

Fig. 12: Novel synthesised view of Ship without positional
encoding


	Phase 2: Deep Learning Approach
	Introduction
	Input Data
	Generation of Rays
	Point Sampling in the ray
	Positional and Directional Encodings
	Volumetric Rendering
	NeRF: Network
	Network Parameters
	Results
	Conclusion

	References

