
RBE 549 Project 2 (Phase 2):
NeRF- Neural Radiance Fields for View Synthesis

UdayGirish Maradana
Robotics Engineering (MS)

Worcester Polytechnic Institute
Worcester, MA 01609

Email: umaradana@wpi.edu

Pradnya Sushil Shinde
Robotics Engineering (MS)

Worcester Polytechnic Institute
Worcester, MA 01609

Email: pshinde1@wpi.edu

Abstract—The following report consists of a detailed analysis
of a deep learning approach to the 3D reconstruction of a scene
using a method known as, Neural Radiance Field (NeRF) which
represents a scene using a fully connected (non-convolutional)
deep network, whose input is a single continuous 5D coordinate
(the spatial location (x, y, z) and viewing direction (θ, ϕ)) and
whose output is the volume density and view-dependent emitted
radiance at that spatial location
Keywords: 3D Reconstruction, Fully Connected Deep Network,
Spatial Location, Radiance, Volume Density

I. INTRODUCTION

NeRF presents a novel view synthesis approach that op-
timizes parameters of a continuous 5D scene representation
to minimize the error of rendering a set of captured images.
NeRf synthesizes views by querying 5D coordinates along
camera rays and uses classic volume rendering techniques to
project the output colors and densities into an image. Because
volume rendering is naturally differentiable, the only input
required to optimize our representation is a set of images
with known camera poses. They describe how to effectively
optimize neural radiance fields to render photorealistic novel
views of scenes with complicated geometry and appearance,
and demonstrate results that outperform prior work on neural
rendering and view synthesis. The physical interpretation of
NeRF is shown in Figure 1.

Fig. 1: NeRF

Usual Nerf Pipeline:

II. METHODOLOGY

The images are synthesized as described below:

1) Sample the 5D coordinates (location and viewing direc-
tion) along camera rays.

Fig. 2: Nerf Pipeline Explanation - Nerf Studio

2) Feed the locations into a Multilayer Perception (MLP)
to produce a color and volume density.

3) Use rendering techniques to composite these values into
an image.

4) Since the rendering function is differentiable, the scene
representation can be optimized by minimizing the
residual between synthesized and ground truth observed
images.

We approximate this continuous 5D scene representation
with an MLP network Fθ : (x, d) −→ (c, σ), where σ is
the volume density and c is the RGB color to be predicted
as a function of location (x) and viewing direction(d) and
optimize its weights θ to map from each input 5D coordinate
to its corresponding volume density and directional emitted
color.

A. Volume Rendering with Radiance Fields

The 5D neural radiance field represents a scene as the
volume density and directional emitted radiance at any point
in space. We render the color of any ray passing through
the scene using principles from classical volume rendering.
The volume density σ(x) can be interpreted as the differential
probability of a ray terminating at an infinitesimal particle at
location x. The expected color C(r) of camera ray r(t) =
o+ td with near and far bounds tn and tf is:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t), d)dt,

where T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
The function T (t) denotes the accumulated transmittance

along the ray from tn to t, i.e., the probability that the
ray travels from tn to t without hitting any other particle.
Rendering a view from our continuous neural radiance field

requires estimating this integral C(r) for a camera ray traced
through each pixel of the desired virtual camera. To numer-
ically estimate this continuous integral using quadrature, a
stratified sampling approach is followed where we partition
[tn, tf] into N evenly-spaced bins and then draw one sample
uniformly at random from within each bin:

ti ∼ U

(
tn +

i− 1

N
(tf − tn), tn +

i

N
(tf − tn)

)
.

Stratified sampling enables us to represent a continuous scene
representation because it results in the MLP being evaluated
at continuous positions throughout the optimization.

Ĉ(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci,

where ∆i = ti + 1 − ti is the distance between adjacent
samples. This function for calculating C(r) from the
set of (ci, σi) values, is trivially differentiable and
reduces to traditional alpha compositing with alpha values
αi = 1− exp(−σi∆i).

III. NETWORK ARCHITECTURE AND IMPLEMENTATION

Please refer to the network architecture in Figure 2. The
architecture and training is exactly same as the original
implementation and loosely based on the official Tensorflow
implementation itself. It is a combination of simple Linear
Layers with ReLU activation of width 256 everywhere with
a skip connection. The network is trained with the same
specifications as mentioned in the paper with Adam optimizer
with learning rate of 5e-4 and exponential decay. For logging
the losses and parameters, we used Weights and Biases as it
easier for remote logging and viewing.

IV. RESULTS AND DISCUSSION

We have basically trained the network on 2 examples
(Lego, Ship) and 1 real world example. The two examples are
provided from Nerf synthetic dataset which are from blender
sim.

The results of the Lego Model are shown in Fig.9 , Fig.10,
Fig.11, Fig.12.

The sample results of the ship model are shown in Fig. 13
(We didn’t get time to train without positional encoding for
this).

We have also trained a real image by moving around the
object (Here a coffee cup) and referred code for Colmap-JSON
[5] for converting the video to set of frames and then do SfM
and calculate poses. Further we removed backgrounds with a
library (Script is present in the code base). After doing this
we passed it to training even though the results are not great ,
almost the shape and color is present and correct. This might
be due to the vibrations or movement while we are taking
pictures and artifacts from the background removal process.
Also the real world experiment novel pose generation is poor.

This can be investigated more to get good videos and running
feature matching with deep learning features or some other
approach. Please check the results in Fig.8,Fig.9.

The real world experiment outputs are shown in Figure 14
and Figure 15. Further the output from NVIDIA instant NGP
is shown in Fig.16 Further we calculated the losses such as
MSE, SSIM, PSNR and LPIPS. Initially we trained the model
with LPIPS backend of Alex because of that we got a bit bad
result as it gives best score but it is not same as traditional
perceptual similarity. Later, we trained with LPIPS backend
as VGG which gave comparable results to paper.

The experiment names (Legend Names in Plots) are as
follows:

1) coffe cup exp: Experiment with Real world images
taken (Coffee Cup)

2) ship wb f: Experiment with Ship model with positional
encoding

3) lego wopos: Experiment with Lego model without po-
sitional encoding

4) lego wpos: Experiment with Lego model with positional
encoding

Please find some of the plots here (Fig.3,4,5,6,7,8), full level
information is present in the table.

TABLE I: Test Metrics (20 Images)

Model/LossName Lego(WP) Lego(WOP) Ship(WP) Coffee Cup

MSE 0.00075 0.002691 0.001231 0.01853
PSNR 31.267 25.701 29.096 17.321
SSIM 0.9882 0.965 0.9369 0.942
LPIPS 0.000514 0.000076 0.0007206 0.0003348

TABLE II: Train Metrics

Model/LossName Lego(WP) Lego(WOP) Ship(WP) Coffee Cup

MSE 0.002908 0.0958 0.002672 0.0255
PSNR 33.098 26.014 30.256 26.504

V. CHALLENGES FUTURE DIRECTION

A. Challenges/Learnings

1) Initially we faced a bit confusion regarding tuning the
parameters and understand the impact of NDC and also
to find the near and far bounds. But we used the values
from original implementation later. Figuring out Near
and far for custom datasets is still a question for us and
the impact on it.

2) The use of positional encoding is clearly showed a
positive effect on the overall render.

3) There were issues with taking high memory but that
was resolved after following the implementation of nerf
pytorch.

4) The training times were too long like 5-6 hours espe-
cially for real world we didn’t get time to complete a
full-fledged training that’s why the results are poor.

Fig. 3: NeRF Architecture - Similar to Original Paper

5) Even though we tried our best to get the good real
world experiment, because of the movement when we
are doing and background objects there were issues with
both COLMAP not able to finding convergence or taking
more than 2 hours for 300 images to find camera poses.
Also the output poses were not accurate. Further we have
removed the background after extracting the camera
poses to avoid learning outside features it improved the
performance a bit and the loss was decreasing but still
because of the artifacts from background removal it was
hard for us to get a proper video output. If done in a
lab setting it should be good. We even tried passing
the COLMAP transforms to NVIDIA Instant Neural
graphics primitives and check the output but that also
wasn’t that great. It seems the data collection itself
should have been done more carefully.

B. Future Directions

1) Understand more about the impact of different factors
and play with hyperparameters.

2) Try to understand how to capture a good real life
experiment and experiment with it.

Fig. 4: NeRF - Train MSE Loss

Fig. 5: NeRF - Train PSNR

Fig. 6: NeRF - Learning Rate Decay

REFERENCES

[1] Mildenhall, B., Srinivasan, P., Tancik, M., Barron, J., Ramamoorthi, R. &
Ng, R. NeRF: Representing Scenes as Neural Radiance Fields for View
Synthesis. (2020)

[2] NERF Original Repo (https://github.com/bmild/nerf) - Written in Tensor-
flow by original authors

Fig. 7: NeRF - Test PSNR

Fig. 8: NeRF - Test SSIM

[3] NERF With Pytorch (https://github.com/yenchenlin/nerf-
pytorch/tree/master) - Pytorch (One of the best cited repos)

[4] NERF Pytorch (Faster Version - https://github.com/krrish94/nerf-pytorch)
- Faster implementation based on Repo 2.

[5] NVIDIA Instant NGP (https://github.com/NVlabs/instant-ngp - The
Fastest NeRF and extensive library which can render meshes too).

[6] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, O. Wang. The Unreason-
able Effectiveness of Deep Features as a Perceptual Metric. In CVPR,
2018

Fig. 9: NeRF - Test LPIPS

((a)) GroundTruth

((b)) Output

Fig. 10: NeRF Output for Lego at 10000 Iterations - Without
Positional Encoding

((a)) GroundTruth

((b)) Output

Fig. 11: NeRF Output for Lego at 10000 Iterations - With
Positional Encoding

((a)) GroundTruth

((b)) Output

Fig. 12: NeRF Output for Lego at 150000 Iterations - Without
Positional Encoding

((a)) GroundTruth

((b)) Output

Fig. 13: NeRF Output for Lego at 200000 Iterations - With
Positional Encoding

((a)) GroundTruth

((b)) Output

Fig. 14: NeRF Output for Ship model at 130000 Iterations -
With Positional Encoding

((a)) GroundTruth

((b)) Output

Fig. 15: NeRF Output for Real model at 10000 Iterations -
With Positional Encoding

((a)) GroundTruth

((b)) Output

Fig. 16: NeRF Output for Real model at 25000 Iterations -
With Positional Encoding

Fig. 17: NVIDIA Instant NGP Output for Real World experi-
ment

	Introduction
	Methodology
	Volume Rendering with Radiance Fields

	Network Architecture and Implementation
	Results and Discussion
	Challenges Future Direction
	Challenges/Learnings
	Future Directions

	References

