
Project 2 - Building Built in Minutes- SfM and
NeRF

Karthik Mundanad
Robotics Engineering Department

Worcester Polytechnic Institute
Email: krmundanad@wpi.edu

Kushagra Srivastava
Robotics Engineering Department

Worcester Polytechnic Institute
Email: ksrivastava1@wpi.edu

Abstract—This report presents our implementation of a sparse
3D reconstruction framework for a given set of images using
multi-view geometry. We present a detailed analysis of all the
major steps involved in Structure from Motion qualitatively
and quantitatively. For the second phase of this report, we
implemented Neural Radiance Fields (NeRF) and conducted
thorough testing on synthetic and custom datasets.

I. PHASE 1: STRUCTURE FROM MOTION (SFM)

Our task was to construct a sparse 3D point cloud given
a finite set of images. Our framework comprises 7 steps: (i)
Estimation of the fundamental matrix using a given set of
matched features, (ii) Estimation of the essential matrix, (iii)
Camera pose estimation from the essential matrix, (iv) Linear
and non-linear triangulation subjected to cheriality constraints,
(v) Adding nth image using perspective-n-point, (vi) Global
optimization using bundle adjustment.

A. Estimation of the fundamental matrix using a given set of
matched features

The first step in our framework is to estimate the fundamen-
tal matrix given a set of matched features based on the epipolar
constraints using RANSAC. We found that using the 7-point
algorithm instead of the 8-point algorithm is more robust since
the probability of no outliers is exponential in the size of the
sample set (see Section 11.6 in [1]).

Let xj ∈ Rn×3×1 and xi ∈ Rn×1×3 be matrices of
homogenized matched feature image coordinates for ith and
jth image respectively. Our goal is to find a solution for
the fundamental matrix, F ∈ R3×3, such that Equation 1 is
satisfied.

xT
j Fxi = 0 (1)

This equation gives rise to a set of equations of the form
Af = 0, where f ∈ R9×1 is a vector of all entries in F
and A is a function of the matched image coordinates for the
image pair. It is possible to solve for f if the rank of A is 7
by making use of the singularity constraint. The solution of
Af = 0, is in the form

αF1 + (1− α)F2 (2)

where α is a scalar variable. The matrices F1 and F2 are
obtained by solving for the right null space of A. Using the
constraint det(F ) = 0 which implies det(αF1+(1−α)F2) =

0. Since F1 and F2 are known, this leads to a cubic equation
in α. There will be 1 or 3 real solutions (7 points and 2 camera
centers form a quadric, if it is a ruled quadric, there will
be 3 real solutions), and substituting it back in Equation 2
will give us the solution for the fundamental matrix. In the
case of 3 real solutions, we performed RANSAC on all the
candidate fundamental matrices and selected the one with the
highest number of inliers obtained. We calculated fundamental
matrices for each image pair to estimate inlier feature pairs.
These inliers were then used as inputs to all the algorithms
discussed below. Please note that we took inputs from online
resources to implement our data loader.

(a) Inliers

(b) Outliers

Fig. 1: RANSAC was used to detect inliers and outliers
subjected to epipolar constraints for a given set of matched
features.

B. Estimation of the essential matrix

Since the camera calibration matrix, K, was given, the
essential matrix, E, can be calculated using Equation 4. The
essential matrix was calculated using singular value decompo-
sition (SVD) followed by rank reduction.

E = KTFK (3)

E = UDV T (4)



Fig. 2: Epilines for the first image features plotted on the
second image.

Fig. 3: Triangulated world points for all camera poses obtained
after SVD of E.

C. Camera pose estimation from the essential matrix

After calculating the essential matrix, there will be 4 pos-
sible solutions for the camera pose (2 solutions for R and C).

C = ±U3 (5)

R = U

 0 ±1 0
∓1 0 0
0 0 1

 (6)

(7)

where U3 is the third column of U. It is important to ensure
that R ∈ SO(3). Hence, if det(R) < 0, then R = −R and
C = −C.

D. Linear and non-linear triangulation subjected to cheriality
constraints

Since there are 4 camera poses, the next step is to linearly
triangulate all the feature points and evaluate the cheriality
constraint which states that the world points must be in front
of the image plane for both camera poses (depth > 0). Figure 3
shows a 2D plot (Y=0) of the triangulated points using all the
candidate camera poses. To rule out three camera poses, we
selected the camera pose that had the most number of features
satisfying Equation 8.

Fig. 4: Improvement after non-linear triangulation

Fig. 5: Improvement in feature projection after non-linear PnP

rT3 (X − C) > 0 (8)

where r3 is the third column of the candidate rotation matrix,
C is the candidate translation vector and the world point X was
calculated using linear triangulation. Since linear triangulation
has no geometric meaning, we used non-linear optimization
to minimize the reprojection error which improved the world
point estimates. Figure 4 shows the refinement in feature
locations after non-linear optimization.

E. Adding nth image using perspective-n-point

To estimate nth camera pose, we found feature points
present in the first two images and the nth image, and the
corresponding world points obtained after non-linear triangu-
lation. Since the intrinsic parameters, K, are known, we solved
the following system of equations using SVD to obtain R and
C.

λx = K
[
R C

]
X (9)

where x are the feature points, X are the corresponding
world points and λ is the scaling factor. The value of R
was corrected to ensure that it was a valid rotation matrix.
This linear estimate acted as an initial guess for the non-
linear optimization framework using reprojection error. Figure



Fig. 6: Point cloud obtained after estimating world points using
the first two images and registering all the other images using
PnP.

Fig. 7: Point Cloud including all the points from the matches
file using PnP poses.

5 shows the improvement in feature projection after non-linear
optimization. We perform this registration step for all the 3
images. The resulting point cloud and the estimated camera
poses are illustrated in Figure 6.

Mean Reprojection Error
Linear Triangulation 87.402

Non-Linear Triangulation 66.731
Linear Perspective-n-Point 88.609

Non-Linear Perspective-n-Point 9.997

TABLE I: We report the reprojection error averaged over all
the images.

Fig. 8: Point cloud correction before and after bundle Ad-
justment. Red indicates before bundle adjustment and blue
indicates after bundle adjustment for the 1st matching file.

F. Global optimization using bundle adjustment.

Bundle Adjustment was performed to optimize both the
triangulated world points and camera poses. To facilitate this,
we constructed a visibility matrix and generated a sparse
matrix for scipy.optimize.least squares. The results of point
cloud triangulation using the first matching file were presented,
revealing limited optimization potential due to the small num-
ber of points. However, a notable total shift of 23.30 in the
L2 norm between the points was observed before and after
bundle adjustment. This is illustrated by Figure 8.

(a) Lego Dataset (b) Ship Dataset

Fig. 9: Ground Truth Samples for Lego and Ship Dataset

II. PHASE 2: NEURAL RADIANCE FIELDS (NERF)

In this section, we present our implementation of NeRF [2]
and the subsequent results obtained on synthetic and custom
datasets.

A. Implementation Details

For the scope of this project, we implemented two versions
of NeRFs: (i) Tiny NeRF and (ii) Original NeRF as in [2].
The network architectures are illustrated in Figures 11 and
12. Hyperparameters for both networks are reported in Table
II



Fig. 10: Case in where our model does not perform well

Network Batch Size Learning Rate Iterations
Tiny NeRF 4096 e−4 4000

NeRF 128000 e−4 4000

TABLE II: Hyperparameters

Fig. 11: Tiny NeRF Architecture

Ship 100 Ship 200 Lego 100 Lego 200 Custom Dataset
PSNR 18.562 19.214 16.542 17.854 12.325
SSIM 0.751 0.721 0.612 0.627 0.316

TABLE III: PSNR and SSIM values for Tiny NeRF. Here
Ship/Lego N represents N ×N image dimension

Fig. 12: NeRF Architecture

B. Results

• Synthetic Datasets We tested the performance of our
network on the Ship and Lego Datasets for Tiny NeRF
and the Lego Dataset for NeRF. We were unable to
generate good results using NeRF for the Ship dataset.
The results can be visualized in Figures 14 and 16.
The ground truth for the corresponding images can be
found in Figure 9. The PSNR and SSIM values for the
corresponding Tiny NeRF experiments can be found in
Table III. In particular, we experimented with two sets
of image dimensions. The NeRF model as given in the
paper was implemented for lego and ship datasets but it
was heavily dependent on weight initialization. The result
for 4000 iterations is shown in Figure ??. Note that the



Fig. 13: Custom Dataset

Fig. 14: Rendered Image Sample generated using Tiny NeRF for Custom Dataset

results are not drastically different from the Tiny NeRF
model but running it on a higher number of iterations will
result in better results. The results for the ship dataset is
not included as they were not satisfactory

• Custom Dataset Our Custom Dataset samples, illustrated
in Figure 13, were sampled from a video captured using
a OnePlus 9R. A sparse 3D point cloud was constructed
using COLMAP and the obtained poses were converted
into the format acceptable by our model using NeRFStu-
dio. We were unable to get good outputs on our custom
dataset using Tiny NeRF. The reason for that could be:
(i) Non-uniform background, (ii) Small area occupied by
the subject red car in the image, (iii) Reflection from
wood surface. The corresponding rendering outputs can
be found in Figure 14. Our dataset is available here

C. Challenges

The NeRF model as shown in the paper was heavily affected
by weight initialization in our case. This was because of to
large number of 0 valued pixels being passed in the model as
rays. The solution to this is to stack all the rays from all the
images and randomly pass the rays to the model. The network
also took a lot of time to train and the batch size for the
model had to be fine-tuned depending upon the resolution of
the image. We intend to run this model for a higher number of

iterations to check the results. Even for the Tiny NeRF model,
the image needed to be highly synthetic for the model to learn
satisfactorily. This is indicated by our tests on the custom
dataset where a large number of iterations are required. The
model is not robust to illumination or reflection as indicated
by Figure 10. In this view, the ship was not well illuminated,
and hence the output is not up to the mark.

REFERENCES

[1] R. Hartley and A. Zisserman, Multiple View Geometry
in Computer Vision, 2nd ed. New York, NY, USA:
Cambridge University Press, 2003.

[2] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T.
Barron, R. Ramamoorthi, and R. Ng, “Nerf: Representing
scenes as neural radiance fields for view synthesis,”
CoRR, vol. abs/2003.08934, 2020. [Online]. Available:
https://arxiv.org/abs/2003.08934

https://drive.google.com/drive/folders/1GnggYvt-T54Ypy8r3l3HrGMY_aHaoFyr?usp=sharing
https://arxiv.org/abs/2003.08934


(a) Tiny NeRF Lego Output for 100× 100 image

(b) Tiny NeRF Lego Output for 200× 200 image

(c) Tiny NeRF Lego Output for 200× 200 image without positional encoding

Fig. 14: Results for Lego Dataset



Fig. 15: NeRF Lego Output for 200× 200 image



(a) Tiny NeRF Ship Output for 100× 100 image

(b) Tiny NeRF Ship Output for 200× 200 image

(c) Tiny NeRF Ship Output for 200× 200 image without positional encoding

Fig. 16: Results for Ship Dataset


	Phase 1: Structure from Motion (SfM)
	Estimation of the fundamental matrix using a given set of matched features
	Estimation of the essential matrix
	Camera pose estimation from the essential matrix
	Linear and non-linear triangulation subjected to cheriality constraints
	Adding nth image using perspective-n-point
	Global optimization using bundle adjustment.

	Phase 2: Neural Radiance Fields (NeRF)
	Implementation Details
	Results
	Challenges


