
Computer Vision - Project 2:
Buildings built in minutes - SfM and NeRF

USING 3 LATE DAYS

Jesdin Raphael
Worcester Polytechnic Institute

Worcester, MA, USA
Computer Science

Email: jraphael@wpi.edu

Harsh Verma
Worcester Polytechnic Institute

Worcester, MA, USA
Robotics Engineering

Email: hverma@wpi.edu

Muhammad Sultan
Worcester Polytechnic Institute

Worcester, MA, USA
Robotics Engineering

Email: msultan@wpi.edu

Abstract—Project 1: ’Buildings built in minutes’ focuses on
creating a 3D reconstruction of the scene using multiple images.
This is implemented in two ways: The first is SfM (Structure from
motion), the traditional approach, and the second is NeRF, the
deep learning approach. In Phase 1 of the project, we implement
the SfM approach. Here we create the entire rigid structure from
a set of images with different viewpoints.

I. PHASE 1: STRUCTURE FROM MOTION WITH
TRADITIONAL APPROACH

In this section, we describe the Traditional approach: SfM
(Structure from Motion) to create a 3D scene from a given set
of images.

The data consists of 5 images which were taken us-
ing a Samsung S22 Ultra’s primary camera at f/1.8 aper-
ture, ISO 50, and 1/500 sec shutter speed. The camera
is calibrated after resizing using a Radial-Tangential model
with 2 radial parameters and 1 tangential parameter using
MATLAB R2022a’s Camera Calibrator Application. The im-
ages provided are already distortion-corrected and resized to
800×600px. The feature-matching points were provided in
files name matching< i >.txt where i is the image name. For
Example, matching3.txt will contain matches from image 3 to
image 4 and image 5.

The steps for SfM can be summarized in the following
points.

1) Feature Matching and Outlier rejection using RANSAC
2) Estimate Fundamental Matrix
3) Estimating Essential Matrix from Fundamental Matrix
4) Estimate Camera Pose from Essential Matrix
5) Cheirality Check using Triangulation
6) Perspective-n-Point (PnP)
7) PnP RANSAC
8) Bundle Adjustment

A. Estimaating Fundamental Matrix

The F (Fundamental) matrix (rank 2) is only an algebraic
representation of epipolar geometry and can both geometri-
cally (constructing the epipolar line) and arithmetically. As a
result, we obtain: x′Ti Fxi = 0 , where i=1,2,. . . ,m. This is
known as epipolar constraint or correspondence condition (or

Longuet-Higgins equation). Since, F is a 3×3 matrix, we can
set up a homogeneous linear system with 9 unknowns:

[
x′
i y′i 1

] f11 f21 f31
f12 f22 f32
f13 f23 f33

 xi

yi
1

 = 0

Thus we get

xix
′
if11 + xiy

′
if21 + xif31 + yix

′
if12

+ yiy
′
if22 + yif32 + x′

if13 + y′if23 + f33 = 0
(1)

Using Eqn (1) we can construct Matrix Ai. For m corre-
spondences, we can simply stack it depthwise.

For F matrix estimation, each point only contributes to one
constraint as the epipolar constraint is a scalar equation. Thus,
we require at least 8 points to solve the above homogenous
system. That is why it is known as the Eight-point algorithm
[1]. We can now solve using SVD for Ax = 0 to get the F
estimate.

B. Feature Matching and Outlier rejection using RANSAC

Since there is noise in the data the matchings would have
outliers. To remove these outliers and get a better F estimate
we use the RANSAC algorithm. Below is the pseudo-code for
the RANSAC implemented.

n = 0;

for i = 1 : M do
Choose 8 correspondences, x̂1 and x̂2 randomly.
F = EstimateFundamentalMatrix(x̂1, x̂2)

S = ∅
for j = 1 : N do

if |xT
2jFx1j | < ϵ then

S = S ∪ {j}
if n < |S| then

n = |S|
Sin = S

Fig. 1: Matched features before 8-point RANSAC

Fig. 2: Matched features after 8-point RANSAC

C. Estimating Essential Matrix from Fundamental Matrix

Now that we have calculated the Fundamental Matrix F we
can find the relative pose between two images. This can be
computed by the Essential Matrix which is also a 3x3 matrix.
It has additional properties that relate to the corresponding
points assuming that the cameras obey the pinhole mode. It
can be calculated by E = KTFK where K is the Camera
Calibration / Intrinsic Matrix. The singular values of E are
not necessarily (1, 1, 0) due to the noise in K. This can be
corrected by reconstructing it with (1, 1, 0) singular values,
i.e.

E = U

1 0 0
0 1 0
0 0 0

V T

D. Estimation of Camera Pose from Essential Matrix

The camera pose consists of 6 degrees-of-freedom (DOF)
Rotation (Roll, Pitch, Yaw) and Translation (X, Y, Z) of the
camera with respect to the world. Since we have estimated
the E matrix, the four camera pose configurations: (C1, R1),
(C2, R2), (C3, R3), and (C4, R4) where C ∈ R3 is the camera

center and R ∈ SO(3) is the rotation matrix, can be computed.
Thus, the camera pose can be written as:

P = KR[I3×3 − C]

These four pose configurations can be computed from E

matrix. Let E = UDV T and W =

 0 1 0
−1 0 0
0 0 1

. The four

configurations can be written as:

C1 = U(:, 3) and R1 = UWV T

C2 = −U(:, 3) and R2 = UWV T

C3 = U(:, 3) and R3 = UWTV T

C4 = −U(:, 3) and R3 = UWTV T

E. Triangulation Check for Cheirality Condition

We have Estimated four Camera Poses P1−P4. Using these
Poses we will triangulate the 3D Points X between two camera
poses and identify the best unique Pose.

Fig. 3: Reprojection with Linear Triangulated Points

Fig. 4: Reprojection with Non Linear Triangulated Points

1) Linear Triangulation: Given Two Camera Poses and the
Points We can calculate the Projected 3D points using the
following Steps

for i = 1 : N do
x1i = skewmatrix(x1i)@P1

x2i = skewmatrix(x2i)@P2

x = [x1i, X2i]

, , V = SV D(xP)

Xnon homogeneous = V t[−1]

Xi = Xnon homogeneous/Xnon homogeneous[−1]

Here Xi is in homogeneous coordinate i.e (x, y, z, 1).

2) Cheirality Check: To check the Cheirality condition,
triangulate the 3D points (given two camera poses) using linear
least squares to check the sign of the depth Z in the camera
coordinate system with respect to the camera center. A 3D
point X is in front of the camera if and only if:

r3(X−C) > 0

where r3 is the third row of the rotation matrix (representing
the z-axis of the camera). Not all triangulated points satisfy
this condition due to the presence of correspondence noise.

The best camera configuration, (C,R,X), is the one that pro-
duces the maximum number of points satisfying the Cheirality
condition.

3) Non Linear Triangulation: After obtaining the 3D points
X from the best Pose we can further refine the points by
using nonlinear optimization. This can be done by minimizing
the error between actual and reprojected points (Reprojection
Error) as shown in Eqn (3).

min
X

2∑
j=1

(
(uj −

P jT
1 X̃

P jT
3 X

)2 + (vj −
P jT
2 X̃

P jT
3 X

)
(3)

Fig 5 shows the triangulated points between the first and
second Image. The red points show the triangulated points
using Linear Triangulation. The Blue points show the refined
triangulated points by using non-linear optimization.

F. Perspective-n-Points

Now, since we have a set of n 3D points in the world,
their 2D projections in the image, and the intrinsic parameters;
the 6 DOF camera pose can be estimated using linear least
squares. This fundamental problem, in general, is known as
Perspective-n-Point (PnP). For there to exist a solution, n ≥ 3.
There are multiple methods to solve the PnP problem, and
most of them have assumptions that the camera is calibrated.

We register a new image given 2D-3D correspondences, i.e.
X ↔ x, followed by nonlinear optimization.

1) Linear PnP: 2D points can be normalized by the in-
trinsic parameter to isolate camera parameters, (C,R), i.e.
K−1x. A linear least squares system that relates the 3D and
2D points can be solved for (t, R) where t = −RTC. Since
the linear least square solve does not enforce orthogonality of
the rotation matrix, R ∈ SO(3), the rotation matrix must be
corrected by R = UV T where R = UDV T . If the corrected
rotation has a determinant of -1, R = −R. This linear PnP
requires at least 6 correspondences.

We can solve the Equation Ax = 0 to find the Pose where
A is given by Eqn (2)

2) PnP RANSNAC: PnP is prone to error as there are
outliers in the given set of point correspondences. To overcome
this error, we use RANSAC again to make our camera pose
more robust to outliers. Below is the pseudo-code for the
implemented PnP RANSAC.

A =

[
X Y Z 1 0 0 0 0 −xX −xY −xZ −x 0 0 0 0
0 0 0 0 X Y Z 1 0 0 0 0 −yX −yY −yZ −y

]
(2)

Fig. 5: Triangulated points using Linear and Non-Linear
Triangulation

n = 0;

for i = 1 : M do

Choose 6 correspondences, X̂ and x̂ randomly.

[C,R] = LinearPnP (X̂, x,K)

S = ∅
for j = 1 : N do
e = reprojectionerror

e =

(
(u− PT

1 X̃

PT
3 X

)2 + (v − PT
2 X̃

PT
3 X

)
if e < ϵ then

S = S ∪ {j}
if n < |S| then

n = |S|
Sin = S

3) Nonlinear PnP: A compact representation of the rotation
matrix using quaternion is a better choice to enforce orthog-
onality of the rotation matrix, R = R(q), where q is a four-
dimensional quaternion, i.e.,

min
C,q

2∑
j=1

(
(uj −

P jT
1 X̃

P jT
3 X

)2 + (vj −
P jT
2 X̃

P jT
3 X

)
(4)

This minimization is highly nonlinear because of the divi-
sions and quaternion parameterization. The initial guess of the

solution, (C0,R0), estimated via the linear PnP is needed to
minimize the cost function.

We minimize Eqn (4) using scipy.optimize.leastsquares
to get optimal Pose.

G. Bundle Adjustment

Once all the Camera Poses P and 3D points X we need
to refine them together. This can be done by solving the
optimization problem shown in Eqn (5)

min
{Ci,qi}ii=1

{X}J
j=1

I∑
i=1

J∑
j=1

((
Vij(u

j − P jT
1 X̃

P jT
3 X

)2 + (vj − P jT
2 X̃

P jT
3 X

))
(5)

Where Vij is the Visibility Matrix

Computing the Jacobian of the above minimization function
is cumbersome, thus we will rely on the finite difference
approximation. To make this process time feasible we provide
Jacobian sparsity structure (i.e. mark elements that are known
to be non-zero) using scipy.sparse [2].

Implementing the Bundle Adjustment helps reduce the
residuals. Fig 6 and Fig 7 show the residuals of the image
before and after Bundle Adjustment. The Orange curve shows
that minimizing (5) helps improve the residuals.

H. Results

From Table I, we see that the magnitude of errors is huge.
However, the there is a significant reduction in errors (by
powers of 10) after each optimization step, such as non-linear
triangulation, non-linear PnP, and bundle adjustment, showing
the effectiveness of the optimizations. The results can be
further improved by implementing RANSAC for Homography
matching at the start to reduce the outliers.

TABLE I: Reporjection Error after Every Step

Linear
PnP

Non-Linear
PnP

Linear
Triangulation

Ig Id 1 2 3 4

2 - - 5.1× 106 - - -

3 5.9× 103 3.6× 103 9.7× 105 7.0× 105 - -

4 6.0× 103 4.4× 103 5.006 892 478× 106 1.5× 106 5.5× 106 -

5 2.9× 104 9.1× 103 3.5× 107 5.3× 106 1.8× 105 1.7× 105

Non linear Triangulation Bundle Adjustment
Image Ids 1 2 3 4 1 2 3 4 5

2 9235.604 - - - - - - -
3 5521.278 3864.327 - - 3,547,929.11 3,722.60 2910.147 - -
4 5573.156 3217.052 1058.0952 - 3119151.85 1150194.954 1377.5225 1438.2166 -
5 7034.604 6056.601 2324.468 2242.181 2333744.667 2108322.257 12699.373 7949.147 5858.621

Fig. 6: Initial Residual

Fig. 7: Residuals after Bundle Adjustment

written by J.R. for filler

Fig. 8: Final Feature World Coordinates in 2D

Fig. 9: Final Feature World Coordinates in 3D

II. PHASE 2 - NERF: REPRESENTING SCENES AS NEURAL
RADIANCE FIELDS FOR VIEW SYNTHESIS

In Phase 2 we use the Deep learning approach to create a
3D scene given a set of images. Here we implement the paper
’NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis’ by Mildenhall Et al. for scene construction.

A. Input

We first load the images and Camera Poses of each image.
We calculate the camera’s Focal Length by the equation
F = 0.5∗image width/tan(0.5∗cam angle x). The images
are of the same object but from different camera angles and
position.

We start off by generating rays (as ray directions and ray
origins) through each pixel. We then sample points on those
rays. We have set the clipping threshold for the depth values
to be 2 for the Near Threshold and 6 for the far threshold.
These are used to set the min-max values of the ray (z-axis)
between which we will sample points for querying the model,
which then produces an output. This is then converted to RGB
and α values using the render function.

The reference paper uses Positional Encoding to improve the
resolution of the resulting image (model higher frequencies
better). Hence, we use 10 frequencies for the positional
encoding (L=10) to encode the ray samples. Eqn. (6) shows
the equation for the positional encoding function [3].

γ(p) = sin(20πp), cos(20πp), . . . , sin(2L−1πp), cos(2L−1πp)
(6)

B. Model Architecture

To save processing time and to work with the available
hardware capabilities, we implemented a smaller version of
NeRF called ’TinyNeRF’ (for the same purpose we resized
all images to 100 x 100, otherwise our GPU was running
out of memory). However, we did implement Hierarchical
Volume Sampling in the TinyNeRF, to get slightly better
results. Hierarchical Sampling basically samples more around
some of the previously sampled points which are more likely
to contribute to the view (are not empty space or occluded by
the object itself).

We have two similar models, one handles coarse samples,
that are sampled initially, and the other model handles fine
samples (obtained using hierarchical sampling). The loss of
both models is calculated and added together to be used for
backward propagation.

Fig. 10 shows the coarse and fine models’ architecture (same
model). The input to the model are the positional encoded
samples along the rays (ray directions not used since this is
TinyNeRF). For training we have set learning rate = 5e−3,
number iterations = 4100. We used the Adam optimizer
to facilitate the training process. Moreover, we used Mean
Squared Error as the loss function of choice.

Fig. 10: Visualization of the Fine / Coarse model architecture

C. Results

From the results, we can see that the model performed
comparatively well. The images are pixelated and have some
pixels missing in a few novel views (black pixels). The PSNR
scores per epoch while training for both the datasets (Fig.
11, Fig. 12, Fig. 13) reached a max value at roughly 4100
epochs after which the PSNR stayed roughly the same, so we
clipped the epochs at 4100 and resulted in a PSNR score of
approximately 18 for the lego set and approximately 20 for
the ship dataset on one holdout image that we isolated from
the training images.

Comparing the results of using positional encoding and not
using it for the lego dataset (Fig. 15), we can see the images
are much sharper with positional encoding (high-frequency
features are easily captured) than without the use of positional
encoding.

The average PSNR and SSIM scores for testing are shown
in Table II. Both the PSNR and SSIM scores for the Lego
set (with and without positional encoding) are higher than the
scores for the ship dataset.

Overall, the lego dataset gave decent results, while ship
dataset also performed well.

Fig. 11: PSNR per epoch of training ship

Fig. 12: PSNR per epoch of training lego

Fig. 13: PSNR per epoch of training lego without positional
encoding

TABLE II: Comparison of PSNR and SSIM values for differ-
ent toys on Test Data.

Toy PSNR SSIM
Lego (encoded) 17.326 0.794
Lego (un-encoded) 15.800 0.681
Ship (encoded) 14.129 0.585

Fig. 14: Visualization of the ship images. The leftmost column
displays the ground truth images, and the rightmost column
shows the encoded images.

D. Problems Faced

While training the dataset, one problem we faced consis-
tently was the GPU running out of memory. to solve this, we
adopted the following steps:

1) Reduced the number of rays in a given mini batch.
2) Resized the image to a lower dimension of 100x100

pixels from 800x800.

REFERENCES

[1] RBE549, “Spring 2024 project 2,” https://rbe549.github.io/spring2024/
proj/p2/, 2024, [Online; accessed February 2024].

https://rbe549.github.io/spring2024/proj/p2/
https://rbe549.github.io/spring2024/proj/p2/

Fig. 15: Visualization of the images. The leftmost column displays the ground truth images, the middle column shows the
encoded images and the rightmost column shows the decoded images.

[2] SciPy Cookbook, “Bundle adjustment,” https://scipy-cookbook.
readthedocs.io/items/bundle adjustment.html, accessed on: Insert
Access Date.

[3] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “Nerf: Representing scenes as neural radiance fields for view
synthesis,” 2020.

https://scipy-cookbook.readthedocs.io/items/bundle_adjustment.html
https://scipy-cookbook.readthedocs.io/items/bundle_adjustment.html

	Phase 1: Structure From Motion with Traditional Approach
	Estimaating Fundamental Matrix
	Feature Matching and Outlier rejection using RANSAC
	Estimating Essential Matrix from Fundamental Matrix
	Estimation of Camera Pose from Essential Matrix
	Triangulation Check for Cheirality Condition
	Linear Triangulation
	Cheirality Check
	Non Linear Triangulation

	Perspective-n-Points
	Linear PnP
	PnP RANSNAC
	Nonlinear PnP

	Bundle Adjustment
	Results

	Phase 2 - NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
	Input
	Model Architecture
	Results
	Problems Faced

	References

