
RBE 549: Project3 Phase 2 - Deep Learning
Approach - NeRF
(Using 1 late day)

Smit M Shah
Email: smshah1@wpi.edu

Worcester Polytechnic Institute

Rigved Sanku
Email: rsanku@wpi.edu

Worcester Polytechnic Institute

Abstract—This project focuses on implementing computer
vision techniques to reconstruct 3D scenes and derive camera
poses using a method known as Structure from Motion (SfM).
SfM leverages a sequence of 2D images to reconstruct the
three-dimensional structure of a scene. Similar to LiDAR, SfM
can generate 3D models based on point clouds. The method
employs the principle of stereoscopic photogrammetry, utilizing
triangulation to compute the relative 3D poses of objects from
stereo pairs of images.

I. PHASE 1 SFM

A. Introduction

In the 3D scene reconstruction process, a crucial step within
the Structure from Motion (SfM) pipeline is feature matching,
where common points in the scene are identified and outliers
are removed using the RANSAC algorithm. Following this, the
Fundamental matrix is estimated, establishing the relationship
between corresponding points in two images captured from
different viewpoints. This matrix is then used to calculate the
Essential Matrix. Camera poses are determined and the correct
one is chosen based on cheirality constraints using Triangu-
lation. This process is repeated for multiple perspectives, and
ultimately, the re-projection error is computed and minimized
through bundle adjustment to refine the reconstruction.

Fig. 1. Overview of SfM Pipeline

The traditional method consists of following steps:
1) Feature Matching and Outlier rejection using RANSAC
2) Estimating Fundamental Matrix (F)
3) Estimating Essential Matrix (E)

4) Estimate Camera Pose from Essential Matrix
5) Check for Cheirality Condition using Triangulation
6) Perspective-n-Point
7) Bundle Adjustment

B. Feature MAtching and RANSAC using Fundamental matrix

High-quality features are crucial for the effectiveness of
computer vision algorithms. In this context, the SIFT fea-
ture descriptor stands out for its robustness, particularly in
structure of motion problems. These features are provided
in the ’matching.txt’ file for all five images, with each file
containing information about the number of feature points in
the respective image and their matches across images. The data
includes the RGB values and coordinates of these features,
as well as a feature-flag map indicating matches with other
images.

Fig. 2. Images of Unity Hall

Images of Unity Hall To handle noise in the data introduced
by the SIFT descriptor, the RANSAC algorithm is employed
with the fundamental matrix to identify the maximum number
of inliers. The normalized 8-point algorithm is used for cal-
culating the fundamental matrix. Normalization is necessary
because the epipolar lines may not precisely intersect at the
center of the point correspondences. After normalization, the
original fundamental matrix is retrieved. However, due to noise
in the correspondences, the fundamental matrix may have a
full rank of 3. To address this, the rank is reduced to 2 by
setting the last diagonal element to zero, thereby obtaining
the epipoles.



Fig. 3. Feature Matching for 2nd and 3rd image

Fig. 4. Outlier Rejectiong - RANSAC (using Fundamental matrix)

We randomly sample 8 points to estimate the fundamental
matrix F . Subsequently, we count the number of points
satisfying the epipolar constraint x′TFx ≈ 0. Finally, we
select the fundamental matrix that yields the largest number
of inlier correspondences. The resulting fundamental matrix
estimated using this method is as follows:

F =

−1.475× 10−6 2.738× 10−5 3.774× 10−3

−3.015× 10−5 6.873× 10−7 2.192× 10−2

−4.182× 10−3 −2.057× 10−2 1.000


C. Estimating Essential Matrix (E)

We estimate the essential matrix from the fundamental
matrix using the equation E = KTFK, where K represents
the camera calibration matrix or intrinsic matrix. Similar to
the computation of the fundamental matrix, the singular values
of E may not necessarily be (1, 1, 0) due to noise in K. To
address this, we reconstruct E with singular values of (1, 1, 0)
using Singular Value Decomposition (SVD). The resulting
essential matrix is evaluated and presented below:

E =

−0.04214669 −0.92090234 0.14438325
0.91820955 −0.03036483 −0.35526598
−0.15619302 0.36683896 0.01020847


D. Estimate Camera Pose from Essential Matrix

The first camera serves as the origin of the global or world
coordinate system. Utilizing the data from the second camera,
four distinct configurations of the second camera relative to
the first are computed in terms of translation vectors (C) and
rotation matrices (R), based on the essential matrix. These
configurations are determined using singular value decompo-
sition, where E = UDV T , and W is defined as:

W =

0 −1 0
1 0 0
0 0 1


The four configurations are calculated as follows:

C1 = U(:, 3) R1 = UWV T

C2 = U(:, 3) R2 = UWV T

C3 = U(:, 3) R3 = UWTV T

C4 = U(:, 3) R4 = UWTV T

E. Cheirality Condition using Triangulation

Our task is to calculate a unique camera pose out of 4 by
removing the ambiguity. This can be done using cheirality
conditions, i.e., reconstructed points should be in front of
cameras and r3(X − C) > 0, whereas r3 is the third row
of the rotational matrix.

After obtaining linearly triangulated 3D points, we aim
to minimize the reprojection error of the location of 3D
points between actual points and re-projected points. In linear
triangulation, we minimize algebraic error, and in non-linear
triangulation, we attempt to minimize geometric error, also
called reprojection error, which is more meaningful. So, when
we try to minimize the reprojection error, we refine the
location of 3D points. We obtain an initial guess from linear
triangulation. We use the scipy.optimize function and
trust region field as optimization methods. The reprojection
error is expressed as

minimize
2∑

j=1

(
(uj −

PT
j X̃

PT
j X

T
3

)2 + (vj −
PT
j X̃

PT
j X

T
3

)2

)

Fig. 5. Cheirality check



Fig. 6. Triangulation(1 & 2) using Correct Camera pose

F. Perspective-n-Points (PnP)

The Perspective-n-Points (PnP) problem involves estimating
the 6 degrees of freedom camera pose based on the 2D
projections of a set of 3D points in the world, along with
the intrinsic camera parameters. This problem is fundamental
in computer vision and is typically solved using linear least
squares techniques.

1) Linear Camera Pose Estimation (Linear PnP): Given
the correspondence between the image points (x) and the
world points (X), as well as the intrinsic camera param-
eters (K), we normalize the image points by calculating
the inverse of the intrinsic parameter matrix. Then, we
solve the system of equations using the Ax = 0 method
to obtain a linear least squares solution with Singular
Value Decomposition (SVD).

2) PnP RANSAC: Linear PnP can be sensitive to outliers
in the point correspondences. To address this issue,
RANSAC (Random Sample Consensus) is employed to
make the camera pose estimation more robust to outliers
in the data.

3) Non-Linear PnP: In the Non-Linear PnP approach, we
aim to further refine the camera pose estimation by mini-
mizing the projection error. This involves optimizing the
rotation matrix and translation vector using the given
correspondences. The optimization process is similar to
that of Non-Linear triangulation, and it utilizes meth-
ods such as scipy.optimize.least_squares
for optimization. Additionally, the rotation matrix may
be converted into a quaternion representation to maintain
orthogonality during optimization.

G. Bundle Adjustment

Bundle Adjustment (BA) is a technique used to refine
camera poses and 3D points in a scene simultaneously. The
process involves two main steps:

1) Visibility Matrix: A visibility matrix is created based on
the camera poses and the visibility of the 3D world points from
each camera’s perspective. Each row of the matrix represents
a camera pose index, and each column represents a real-world
coordinate index. For every world point index, the matrix
contains a binary value (0 or 1) indicating whether the point
is visible from a particular camera index.

2) Bundle Adjustment Implementation: After obtaining ini-
tial estimates of camera poses and 3D points, typically through
methods like Non-Linear PnP, the next step is Bundle Ad-
justment. In Bundle Adjustment, the new rotation matrices
and translation vectors obtained are further optimized to
minimize errors. The optimization process involves refining
the rotation matrices (R) and translation vectors (C) using
the least squares method. The input to the bundle adjustment
function includes the world coordinates (X), the new camera
coordinates (x), camera parameters, rotation matrices (R),
translation vectors (C), and the visibility matrix (V). The
optimization is performed based on an error function, typically
the re-projection error, to align the observed 2D image points
with the corresponding 3D world points. The refined camera
poses and 3D points are obtained as outputs of the optimization
process.

Bundle Adjustment helps refine the location of 3D points
and camera poses, leading to increased accuracy and consis-
tency in the reconstructed scene. It uses the visibility matrix to
establish relationships between cameras and points, enabling
the refinement process to optimize the entire reconstruction
pipeline effectively.

Fig. 7. Reconstructed scene after Sparse Bundle Adjustment (SBA) for images
1 to 5.

The final reconstructed scene after Sparse Bundle Adjust-
ment (SBA) for images 1 to 5.



H. Results Analysis

Several observations arise from the comparison between the
refinement before and after Bundle Adjustment, as well as the
overall Structure of Motion pipeline:

• As emphasized in the Feature Matching section, the
quality of features plays a crucial role in computer vision
tasks. Poor quality data can lead to significant problems
and inaccuracies, particularly in feature matching, which
directly impacts the calculation of the fundamental matrix
(F).

• Due to the algorithm’s heavy reliance on optimization,
the least squares method employed in the optimization
process can be slow. Class discussions have highlighted
the existence of more efficient methods for implementing
nonlinear optimization, which can enhance both accuracy
and speed.

The initial estimates for both intrinsic and extrinsic pa-
rameters are crucial for the optimization process to converge
efficiently. The checkerboard pattern serves as a reference grid
during calibration, allowing accurate correspondences between
real-world points and their image pixels.

II. PHASE 2 NERF - DEEP LEARNING APPROACH

A neural radiance field (NeRF) is a method based on deep
learning for reconstructing a three-dimensional representation
of a scene from sparse two-dimensional images. The NeRF
model enables learning of novel view synthesis, scene geom-
etry, and the reflectance properties of the scene. Additional
scene properties such as camera poses may also be jointly
learned.

Fig. 8. Input and Output of NeRF

Traditional 3D reconstruction methods often struggle with
scenes that have complex geometry or lighting conditions.
NeRF addresses this by representing a scene as a continuous
5D (spatial (x,y,z) and viewing direction (θ,ψ) )function that
maps 3D spatial coordinates and viewing directions to radiance
values (color and intensity of light) at those points. This allows
for high-fidelity rendering of novel views of the scene from
any viewpoint.

The key idea behind NeRF is to train a neural network to
approximate this 5D function using a large set of images cap-
tured from different viewpoints. During training, the network
learns to predict radiance values for any given 3D point and

viewing direction by aggregating information from the input
images.

A. Getting Rays

The Neural Radiance Fields (NeRF) method relies on trac-
ing rays from each pixel in the input images, using a pinhole
camera model. These rays’ directions are calculated relative
to the camera frame and then transformed into the world
coordinate system using the camera poses’ rotation matrices.

B. Positional and Directional Encoding

Passing the coordinates of points directly to the network re-
sults in poor performance, especially when only a single image
is used. This is because the network tends to focus on learning
low-frequency features and ignores higher frequencies. To
address this, Neural Radiance Fields (NeRF) use positional
encodings, which are the sines and cosines of point coordinates
at various frequencies, as inputs to the network instead of
the raw coordinates. Similarly, directional encodings, which
are the sines and cosines of directional inputs at different
frequencies, are used instead of the raw directional inputs.

C. Network

The NeRF model is 8 layers deep with feature dimension
of 256 for most layers. A residual connection is placed at
layer 5. After these layers, the RGB and values are produced.
The RGB values are further processed with a linear layer, then
concatenated with the view directions, then passed through yet
another linear layer before finally being recombined with at
the output.

However, our results are based on a tiny variation of the
NeRF model called Tiny NeRF, which decreases the size of
input images from 800x800 to 100x100 and the model is
decreased to a 3-layer deep neural network. These step was
taken to decrease processing time and computational power
required. We take 3000 rays and from each ray 64 samples
are taken. The whole process is iterated 1000 times with batch
size of 64, learning rate 0.006.

Fig. 9. Physical interpretation of NeRF



Fig. 10. Network architecture of NeRF

Fig. 11. Frame from rendered gif

Fig. 12. Good Example for Lego

Fig. 13. With and Without Positional Encoding for Lego

Fig. 14. Bad Example for Lego



Fig. 15. Lego result when trained for (a) 100 (b) 700 (c) 2000 and (d) 4000
iterations

Fig. 16. Ship result when trained for (a) 200 (b) 700 (c) 1500 and (d) 4000
iterations



Fig. 17. PSNR for Lego Without and With Positional Encoding

Fig. 18. SSIM for Lego Without and With Positional Encoding

Fig. 19. MSE Loss for Lego Without and With Positional Encoding

Fig. 20. MSE Loss for Ship Dataset

Fig. 21. PSNR for Ship Dataset



Fig. 22. SSIM for Ship Dataset

Metric Lego Ship
Avg PSNR 20.361 24.111
Avg SSIM 0.7562 0.5888

TABLE I
PSNR AND SSIM ERROR.

REFERENCES

[1] Bundle Adjustment:
https://scipy- cookbook.readthedocs.io/items/bundle adjustment.html

[2] Upenn Project:
https://www.cis.upenn.edu/ cis580/Spring2015/Projects/proj2/proj2.pdf

[3] Repository Reference:
https://github.com/Prasannanatu/sfm and nerf

[4] Tiny Nerf Repository:
https://github.com/bmild/nerf


	Phase 1 SfM
	Introduction
	Feature MAtching and RANSAC using Fundamental matrix
	Estimating Essential Matrix (E)
	Estimate Camera Pose from Essential Matrix
	Cheirality Condition using Triangulation
	Perspective-n-Points (PnP)
	Bundle Adjustment
	Visibility Matrix
	Bundle Adjustment Implementation

	Results Analysis

	Phase 2 NeRF - Deep Learning Approach
	Getting Rays
	Positional and Directional Encoding
	Network

	References

