
Project 2b: Building Built in Minutes - Nerf
Ankit Mittal

Department of Robotics Engineering
Worcester Polytechnic Institute

Email: amittal@wpi.edu

Rutwik Kulkarni
Department of Robotics Engineering

Worcester Polytechnic Institute
Email: rkulkarni1@wpi.edu

Abstract—In this report, we explore the implementation of
Nerf a method for synthesizing novel views of complex scenes,
leveraging a sparse set of input views to optimize a continuous
volumetric scene function represented by a deep fully-connected
network. Processing 5D coordinates to predict volume density
and view-dependent radiance, this approach employs classical
volume rendering to achieve photorealistic renderings.

I. INTRODUCTION

Leveraging a sparse array of input views, our approach
optimizes a continuous volumetric scene function represented
through a sophisticated fully-connected deep network. This
network processes unique 5D coordinates—encompassing
both spatial locations (x, y, z) and viewing directions (θ,
ϕ)—to predict volume density and direction-dependent emitted
radiance accurately.

By querying these 5D coordinates along camera rays, we
employ classical volume rendering techniques to compose the
resultant images, achieving an unprecedented level of photo-
realism in the synthesis of novel views. The core innovation
of our approach lies in its optimization process, which is
facilitated by the natural differentiability of volume rendering,
requiring only a series of images with known camera poses
to refine our scene representation. In our comprehensive im-
plementation review, we discuss the challenges encountered,
optimizations applied, and the comparative results in different
scenarios.[1]

II. MODEL INPUT

In our study, we utilize a dataset comprising images of a
lego and ship structure, as shown in Figure 1 . Additionally,
each image is accompanied by its corresponding camera pose,
represented as camera-to-world transformation matrices. Our
approach leverages Neural Radiance Fields (NeRF) and classic
volume rendering techniques, treating every pixel in the image
as a ray in the real world. To prepare our data for the neural
network, we first convert all data to world coordinates. This
conversion enables us to define the direction of each ray
accurately and to compute 3D spatial coordinates by sampling
points along these rays. This preprocessing step is crucial for
feeding the correct input into our model to generate the desired
output.

A. Ray generation

To synthesize views in our dataset, which includes images
of a lego structure as illustrated in Figure 1, we generate

Fig. 1: Lego dataset - sample picture

rays originating from each pixel of the image. A ray is
mathematically represented by the equation involving ’o’ for
the origin, ’t’ as the sampling parameter, and ’d’ for the
direction. For our purposes, the origin ’o’ is determined by
the position of the pixel within the image, and the direction
’d’ is defined by a unit vector pointing from the camera center
to the specific pixel position.

Initially, our values are confined to the 2D plane of the
image and expressed in pixel coordinates. To transform these
into rays suitable for our model, we follow these steps:

1) Transform the pixel coordinates into normalized co-
ordinates relative to the camera center. This involves
adjusting the coordinate frame to (X, -Y, -Z) as per the
COLMAP convention, with an assumption that Z = -1.

2) Calculate the ray direction relative to the camera frame
by first obtaining the vector in the camera’s frame. Then,
by multiplying this vector by the rotation part of the
camera-to-world transformation matrix, we convert this
vector into the world frame. The ray direction in unit
vector form is achieved by normalizing this vector, i.e.,
dividing it by its magnitude.

3) The origin of the ray in world coordinates is identified
simply by the translation component of the camera-to-
world transformation matrix.



These steps ensure that we accurately generate rays from
the image pixels to the world frame, allowing us to process
and render the scene with our Neural Radiance Field model.

B. Sample Points

Having defined the direction and origin for each ray, the
remaining element to specify is the sampling parameter, which
determines how we sample points along the ray. To refine our
model’s ability to synthesize and render complex scenes, we
incorporate uniform sampling along the ray’s path, enhanced
with the addition of some random noise. This technique of
noise addition is aimed at introducing variability, ensuring
that the model encounters a wider array of data during
training. This variability is crucial for improving the model’s
performance, as it simulates a more diverse set of lighting
and viewing conditions, leading to more robust and realistic
outputs. The sampling strategy involves calculating midpoints
along the ray, establishing intervals around these points, and
then randomly selecting points within these intervals to simu-
late the effect of noise. In order to determine the midpoint for
sampling along each ray, we start with two predefined points:
the near ray point (hn=2) and the far ray point (hf=6). We then
uniformly sample 192 points between these two bounds along
the ray, introducing randomness into the sampling process
to incorporate noise. This technique ensures that each ray is
sampled with a distribution that simulates realistic lighting and
material interactions within the scene. This approach helps in
accurately capturing the nuances of light interaction within the
scene, ultimately contributing to the generation of high-quality,
photorealistic images.

C. Position Encoding

In the seminal work, it was observed that employing po-
sitional encoding to represent high-frequency variations in
both color and geometry yields improved results compared to
operating on the raw spatial coordinates (x, y, z) and viewing
directions (θ, ϕ). Positional encoding is utilized to enhance the
network’s capability in modeling fine details by transforming
low-dimensional input coordinates into a higher-dimensional
space. This transformation is realized through the function
γ(p), which maps a scalar input p to a vector of sinusoidal
functions, as follows:

γ(p) =
[
sin(20πp), cos(20πp), sin(21πp), cos(21πp), . . . ,

sin(2L−1πp), cos(2L−1πp)
]

where L denotes the number of frequency octaves. The use
of sinusoidal functions of exponentially increasing frequencies
– where 2l indicates the frequency scaling factor for the l-
th octave – allows the encoding to capture complex patterns
across different scales. The inclusion of both sine and cosine
terms for each frequency octave ensures a complete and rich
representation of periodic functions within the encoded space.
This encoding is applied separately to each of the spatial
coordinates (L = 10) and direction vector components(L =
4), resulting in a nuanced, high-dimensional representation

that significantly enhances the neural network’s performance
in rendering photorealistic images with high fidelity.

III. NETWORK -MLP

Fig. 2: Network Architecture

A visual representation of our fully-connected neural net-
work is provided. The architecture comprises input vectors in
green, intermediate hidden layers in blue, and output vectors
in red, with the dimension of each vector indicated inside its
corresponding block. All layers are fully-connected with black
arrows denoting ReLU activations, orange arrows for layers
without activation, dashed black arrows for sigmoid activa-
tions, and a “+” symbol representing vector concatenation.

The positional encoding of the input location, γ(x) and
raw spatial coordinates (x, y, z) (input vector size = 60 +3),
is processed through eight fully-connected layers with ReLU
activations, each consisting of 256 channels. Adhering to
the DeepSDF architecture, a skip connection is implemented,
appending the encoded input to the activation of the fifth
layer. The network includes an additional layer that yields
the volume density σ, which is subjected to a ReLU function
to guarantee nonnegative density values, along with a 256-
dimensional feature vector.

This feature vector is combined with the positional encoding
of the input viewing direction, γ(d) & raw view direction
vector (input vector size = 24 + 3), and then forwarded through
another fully-connected ReLU layer with 128 channels. The
concluding layer, applying a sigmoid activation, computes the
emitted RGB radiance at location x from a ray with direction
d.

A. Network Parameter

Sr. No. Parameter Value
1 Epochs 3
2 MiniBatchSize 1024
3 Learning rate 0.0005
4 Image Size 400 X 400
5 Optimizer Adam

TABLE I: Network Parameter

IV. VOLUME RENDERING

The network’s output comprises the RGB color value and
the volume density at a specific location. These predicted
values are utilized to render the 3D scene. The predictions



are integrated into the classical volume rendering equation to
compute the color of a specific point in space. The volume
rendering equation is typically expressed as follows:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d) dt

where C(r) represents the resulting color along the ray r, tn
and tf define the near and far bounds of integration along the
ray, T (t) is the accumulated transmittance from tn to t, σ is the
volume density at position r(t), and c is the emitted radiance
(color) at position r(t) for a ray traveling in direction d. The
integration accumulates the contribution of light at each point
along the ray, modulated by the transmittance and density to
determine the final pixel color.

V. LOSS FUNCTION

After completing 3D volume rendering to obtain all the
RGB color values, we proceed to calculate the photometric
loss between these predicted color values and the actual image
values, employing the Sum of Squared Differences (SSD) loss
for this purpose.

L =
∑
i

∥∥∥Ii − Îi

∥∥∥2
2

(1)

VI. TRAINING

We received two distinct datasets for our study, one con-
sisting of lego images and the other of ship images, with
each dataset containing 100 images. We trained our model
using all the images from both datasets with the specified
parameters. Additionally, we conducted an experiment on the
LEGO dataset without incorporating positional encoding to
understand its impact. The outcomes of these training sessions
are discussed and compared in the results section.

VII. RESULTS

In the initial section, we will present a comparative eval-
uation of the test-set views from synthetic scenes produced
through a physically-based rendering method.

A. Lego

Fig. 3: SSD vs Iterations

(a) Ground Truth (b) Rendered view

Fig. 4: Lego Dataset.

PNSR SSIM
Lego (Test Set) 24.67 0.74

TABLE II: Avg PNSR and SSIM

B. Lego(without position encoding)

Fig. 5: SSD vs Iterations



(a) Ground Truth (b) Rendered view

Fig. 6: Lego Dataset.

PNSR SSIM
Lego (Test Set) 21.77 0.63

TABLE III: Avg PNSR and SSIM

C. ship

Fig. 7: SSD vs Iterations

(a) Ground Truth (b) Rendered view

Fig. 8: Lego Dataset.

PNSR SSIM
Ship (Test Set) 23.11 0.70

TABLE IV: Avg PNSR and SSIM

VIII. ACKNOWLEDGMENT

The author would like to thank Prof. Nitin Sanket, Teaching
Assistant, and Grader of this course RBE549- Computer
Vision.

REFERENCES

[1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “Nerf: Representing scenes as neural radiance fields for
view synthesis,” CoRR, vol. abs/2003.08934, 2020. [Online]. Available:
https://arxiv.org/abs/2003.08934

https://arxiv.org/abs/2003.08934

	Introduction
	Model Input
	Ray generation
	Sample Points
	Position Encoding

	Network -MLP
	Network Parameter

	Volume Rendering
	Loss Function
	 Training
	Results
	Lego
	Lego(without position encoding)
	ship

	Acknowledgment
	References

