
RBE/CS 549 Computer Vision
Project 2 Phase 2

Structure from Motion
Puneet Shetty
MS in Robotics

Worcester Polytechnic Institute
Email: ppshetty@wpi.edu

Using 1 Late Day

Edwin Clement
MS in Robotics

Worcester Polytechnic Institute
Email: eclement@wpi.edu

Using 1 Late Day

Abstract—In this project, the Structure from Motion
(SfM) method of computer vision techniques is implemented
for simultaneous camera pose estimation and 3D scene
reconstruction. SfM is able to construct point cloud-based 3D
models that are similar to those made by LiDAR technology by
analyzing a set of 2D photos. In order to determine the relative
3D poses of objects using stereo pairs, the method depends
on the concepts of stereoscopic photogrammetry, triangulation,
perspective-n-points, RANSAC, Epipolar Geometry, and Bundle
adjustment. The application of SfM in 3D reconstruction is
demonstrated in this study, along with its potential for use in
conjunction with other deep learning techniques like Neural
Radiance Fields (NeRF).

Index Terms— RANSAC, Triangulation, Perspective-n-Points,
Bundle Adjustment, Visibility Matrix, Structure from Motion

I. PHASE 2: DEEP LEARNING APPROACH NEURAL
RADIANCE FIELD (NERF)

Using a sparse collection of input views, we will optimize
a continuous volumetric scene function to synthesize unique
views of complicated scenes by using Neural Radiance Fields
(NeRF) in the Deep Learning section. A 5D continuous array
serves as the NeRF’s input. The first three components of the
array describe the spatial location’s 3D coordinates, while the
latter two elements indicate the direction of the ray created
by connecting a specific image pixel to the camera center.
The RGB color (radiance field) of that particular pixel and the
volume density at that spatial location are the NeRF’s outputs.
The steps for NeRF is as follows:

• Preprocessing Data
• Neural network
• Post Processing the Network output

A. Pre-Processing Data

1) Obtaining the Ray: The picture coordinates and each
image’s projection matrix are the given data. The first
step involves utilizing a projection matrix to convert those
image points to world points. Next, a ray is created that
passes through both spots till. We will produce a specific
quantity of rays from each image pixel by doing this.

Fig. 1: Input and Output to nerf

Fig. 2: Physical interpretation

The number of rays is a hyperparameter that can be
adjusted; it is closely correlated with the output quality
and computation time.

2) Sampling the Rays: Using the direction and origin of
the earlier-obtained rays, we are attempting to sample
the rays uniformly in this instance. Both uniform and
non-uniform rays can be sampled. We sampled the rays
linearly for the current circumstance, and the results are
passable. To prevent overfitting and obtain a strong model
for additional testing, we purposefully introduce noise
during this procedure.

3) Encoding the Ray: The obtained sample points are simply
encoded at higher frequencies in the sin and cos terms
using positional encoding. When encoding with more
frequencies than when not encoding, the result is superior.
However, because the input multiplies as the number of
frequencies increases, the calculating time will grow as
the frequencies increase. In this case, the quantity of



higher dimnesion frequencies is a hyperparameter that
can be adjusted to get better outcomes.

B. Neural Network

Fig. 3: Caption

C. Post-Processing

The network output consists of the volume density at a
certain place and the RGB color value. Thus, to render the
3D scene, we employ these expected values. To determine
the color of a specific location, the predictions made by the
network are entered into the traditional volume rendering
equation. To determine the final color in the image (radiance
field), we first compute the transmittance up to a certain
sample site using volume density. We then multiply that result
by the predicted color at that location. For every pixel, we go
through this process again.

Fig. 4: Loss vs Iterations

D. Loss Function

After 3D volume rendering, we can simply compute the
photometric loss between the expected color values and the
actual image values after we have all the color (RGB) values.

(a) Iteration 500 (b) Iteration 1000

(c) Iteration 1500 (d) Iteration 1900

Fig. 5: Rendered view for same pose at various iterations

E. Conclusion

For the parameters mentioned above, there was no dis-
cernible change in the image output during the 500 epoch
period. We will undoubtedly have better results if the model
is trained for larger epochs and much better hyperparameters.
If we try utilizing more samples per ray, the results will be
considerably better because they will contain more features
and data. Tensor forms are extremely important since one error
might spell disaster.



(a) Test Pose 0

(b) Test Pose 3

(c) Test Pose 6

Fig. 6: Generated Images for test poses


