
RBE 549 Project 2: Buildings Built in Minutes -
NeRF

Amrit Krishna Dayanand, Venkata Sai Krishna Bodda
MS Robotics Engineering

WPI
Email: adayanand@wpi.edu, vbodda@wpi.edu

I. INTRODUCTION

Neural radiance fields (NeRF) is a method to represent a
scene using a fully-connected, non-convolutional deep neural
network. Its 5-d input, x, is a spatial location and camera
viewing direction, d, which are queried along a ray in the
camera’s viewing direction. Its output is the volume density
and view-dependent radiance emitted. Classical, differentiable
volume rendering is used to project the output color and
density and subsequently train the network. NeRF can be used
to generate novel views and can capture specular phenomena
in a photorealistic manner. It outperformed state-of-the-art
methods when it was published, and inspired various papers,
including Nvidia’s Instant-NeRFs.

Fig. 1. High-level representation of NeRF pipeline

II. VOLUME RENDERING

The volume density σ(x) is interpreted as the differential
probability of a ray terminating at an infinitesimal particle
at x. In simple terms it represents the opacity of a point in
space, which ranges from [0., 1.], capturing translucence. The
expected color, C(r) of ray r = o + td with near and far
bounds tn and tf is:

C(r) =
∫ tf

tn

T (t)σ(r(t))c(r(t),d) dt (1)

where, T (t) is the transmittance defined as,

T (t) = exp (−
∫ t

tn

σ(r(s)) ds) (2)

This continuous integral is estimated using quadrature and
stratified sampling.

A. Hierarchical sampling

To reduce the number of computations with low
contributions to the transmittance, the paper implements
stratified sampling and importance-based sampling.

Stratified sampling is a method where the near and far
bounds are divided into N-evenly spaced bins that are uni-
formly sampled. This initial sampling is coarse and includes
empty space. By using the output of volume rendering to
sample finely at regions more likely to contain salient parts
of the scene.

B. Quadrature rule

Over the course of optimization, the discrete quadrature
process can be used to represent a continuous scene. The
quadrature rule modifies the volume rendering equation as
follows:

Ĉ(r) =
N∑
i=1

Ti(1− exp (−σiδi))ci (3)

where Ti is given by,

Ti = exp (−
i−1∑
j=1

σjδj) (4)

and where δi = ti+1 − ti is the distance between adjacent
samples.

III. OPTIMIZATION OF A NEURAL RADIANCE FIELD

A. Positional encoding

The authors noted that the network was good at capturing
low frequency features of the scene, but not high frequency
ones, like specular phenomena. To improve the quality of the
network in capturing these features, positional encoding is
used. Positional encoding sends a low frequency signal to an
L-dimensional high-frequency signal, where the position, and
direction is concatenated with its high dimensional encoding.
The dimensionality is L = 10 for position, and L = 4 for
viewing direction.

The encoding is given by:



γ(p) = (sin(20πp), cos(20πp), ..., sin(2L−1πp), cos(2L−1πp))
(5)

- Show results of novel views for both datasets (take frames
from the gif you created). - Talk about any issues you faced
and how you solved them. - Report the average PSNR and
SSIM on the test set (You can use any third party code for these
calculations, a sample can be found here.) - Compare results
with and without positional encoding (for atleast any one of
the datasets). Show a few good and bad examples of your
model output with comparison with the ground truth images
in test set

B. Network

The fully-connected multilayer perceptron (MLP) network
has 8-layers. The network takes as input a positionally encoded
position, and viewing direction. It outputs the 1-d opacity
and 3-d RGB color. Following the DeepSDF architecture, the
network includes a skip connection.

Fig. 2. Multilayer perceptron network for NeRF

We optimize using the following mean squared error loss
function:

L =
∑
r∈R

∥Ĉ(r)− C(r)∥22 (6)

where R is the set of rays in a batch, C(r) is the ground
truth, and Ĉ(r) is the predicted output.

C. Hyperparameters and Data Engineering

To reduce the computational load on our GPUs we
downsampled the input images by a factor of 8, reducing
the size of images to (100, 100). This resulted in poorer
resolution of the continuous scene representation, yet the
image and novel views were distinguishable. This likely
contributes to our results of average PSNR and SSIM.

We used an Adam Optimizer with default values and a
dynamically decaying learning rate from 5 ∗ 10−4 to 5 ∗ 10−5

over 10,000 epochs.

IV. RESULTS

Our network was trained on the Lego and Ship datasets with
positional encoding. We present the results of our test set for
both datasets and the impact of not using positional encoding
(PE) for our inputs. We use peak signal-to-noise ratio (PSNR)

Fig. 3. Example of a good net-
work output. Specular phenom-
ena on the tracks of the Lego
model are captured, albeit with
some blur.

Fig. 4. Ground truth

and structural similarity (SSIM) to evaluate the quality of our
network. The table summarizes the average PSNR and SSIM
for both image datasets (higher is better).

Test Set Loss PSNR SSIM

Lego 0.000235947 26.2719 0.949018
Lego (no PE) 0.00426547 23.7003 0.821065

Ship 0.00324482 24.8881 0.871624

We observed a 9.8% difference in PSNR, and 13.5% differ-
ence in SSIM between the render with positional encoding and
without. Despite the lower resolution of the training images,
the impact of positional encoding was significant.

Fig. 5. Novel view rendered using NeRF of the Lego dataset

The main challenge we faced was training speed. This was
greatly improved by reducing the resolution of the dataset and
moving training to a GPU cluster. This reduced the number
of model parameters, at the cost of accuracy.



Fig. 6. Novel view rendered without implementing positional encoding

Fig. 7. Summary of the network parameters

Fig. 8. Example of a poor net-
work output. Specular informa-
tion is not captured accurately,
and there are more artifacts on
the texture of the basin and
ship’s masts.

Fig. 9. Ground truth

Fig. 10. Novel view rendered using NeRF on the Ship dataset


	Introduction
	Volume Rendering
	Hierarchical sampling
	Quadrature rule

	Optimization of a Neural Radiance Field
	Positional encoding
	Network
	Hyperparameters and Data Engineering

	Results

