
RBE/CS 549 Project 2
Structure from Motion and NeRF

Blake Bruell
Worcester Polytechnic Institute

babruell@wpi.edu

Cole Parks
Worcester Polytechnic Institute

cparks@wpi.edu

Abstract—This report presents the results of implementing a
Structure from Motion (SfM) pipeline and a Neural Radiance
Field (NeRF) model. The SfM pipeline estimates the camera poses
and 3D structure of a scene from a set of 2D images by creating
point clouds, which recreate the scene in 3D.

I. PHASE 1: STRUCTURE FROM MOTION

A. Introduction

Structure from motion is a computer vision technique that
aims to recover the 3D structure of a scene from a set of 2D
images. The basic idea is to estimate the camera poses and 3D
points that best explain the observed 2D points in the images.
This is a challenging problem, as it requires solving for the
camera poses and 3D points simultaneously, and is sensitive
to noise and outliers. In this phase, we implemented a basic
structure from motion pipeline that estimates the camera poses
and 3D points from a set of 2D images. We begin this section
with the math and algorithms used in a basic SfM pipeline
for a single pair of images, and then extend it to multiple
images. We then discuss the challenges and limitations of the
basic pipeline, and propose a more robust and scalable pipeline
that addresses these issues. Finally, the results of the pipeline
applied to Unity Hall at WPI are presented.

B. Estimating the Fundamental Matrix

The first step in the Structure from Motion (SfM) pipeline
is to estimate the fundamental matrix. The fundamental matrix
describes the epipolar geometry between two images, relating
the points in one image to the corresponding epipolar lines in
the other image. This relationship is captured in the following
mathematicaly expression, refered to as the epipolar constraint:

x′⊤
i Fxi = 0 (1)

where xi and x′
i are the homogeneous coordinates of the cor-

responding points in the two images, and F is the fundamental
matrix. This equation is then expanded to the following form:

[
x′
i y′i 1

] f11 f12 f13
f21 f22 f23
f31 f32 f33

xi

yi
1

 = 0 (2)

which can be transformed into a the following linear equation:

x′
1x1 x′

1y1 x′
1 y′1x1 y′1y1 y′1 x1 y1 1

...
...

...
...

...
...

...
...

...
x′
nxn x′

nyn x′
n y′nxn y′nyn y′n xn yn 1

f11
f12
f13
f21
f22
f23
f31
f32
f33

= 0 (3)

Note that we need at least 8 point correspondences to solve
for Equation 3, as each correspondence only contributes 1
contraint to the system, as the epipolar constraint is a scalar
equation.

To solve Equation 3 we use singular value decomposition
(SVD) to find the least squares solution to the linear equation.
The fundamental matrix is then constructed from the least
squares solution, and the rank-2 constraint is enforced by
setting the smallest singular value to zero.

To increase the stability of the solution, the 8 points from
each image are normalized using basic normalization matrices,
T and T′. Once the eight-point algorithm is applied to the
normalized points, the fundamental matrix is denormalized
using the following equation:

F′ = T′⊤FT (4)

It is important to note, however, that the eight-point algo-
rithm is sensitive to noise and requires a sufficient number
of point correspondences for accurate results. Additionally, it
can be affected by degenerate configurations, such as coplanar
points or degenerate camera motion. To solve these solutions
one more step is required.

The resulting fundamental matrix can be visualized by
looking at the epipolar lines in the two images. Epipolar lines
are lines which pass though a feature point one image and
location of the other camera in that image. The epipolar lines
are shown in Figure 1.

Fig. 1: Epipolar lines in the two images

C. Match Outlier Rejection with RANSAC

To address the aforementioned issues with the naive eight-
point algorithm, we use the RANdom SAmple Consensus
(RANSAC) algorithm to reject outlier correspondences, and
thus obtain a more accurate estimate of the fundamental ma-
trix. RANSAC is an iterative algorithm that selects a random
subset of the data and fits a model to that subset, in our case a
random set of 8 correspondences. It then evaluates the model
on the remaining data, and the points that are consistent with
the model are considered inliers. This process is repeated for
a specified number of iterations, and the model with the most
inliers is chosen as the best estimate

One aspect of the algorithm which was glossed over is the
evaluation of the model on the remaining data. The naive
approach would be to simply consider the algebraic error of
Equation 1, and apply a threshold. This, while functinoal,
does not reflect the physical reality of what we are trying
to model, which is the geometric error. The better option, and
what was used, is Sampson distance, which is a first order
approximation to geometric error. The Sampson distance is
given by the following equation:

d(xi,x
′
i)

2 =
(x′⊤

i Fxi)
2

∥Fxi∥22 + ∥F⊤x′
i∥22

(5)

The output of the fundamental mattix RANSAC with Samp-
son distance is shown in Figure 2. It can clearly be seen that
RANSAC has effectively removed the outlier correspondences,
resulting in a more accurate set of matches.

D. Estimating the Essential Matrix from the Fundamental
Matrix

The next step of the SfM pipeline is to estimate the essential
matrix from the fundamental matrix. The essential matrix is
a 3 × 3 matrix that relates the corresponding points in two
images, assuming that the cameras obey the pinhole model.

Fig. 2: Matched features with discarded matches shown in red

It can be computed from the fundamental matrix using the
following relationship:

E = K⊤FK (6)

Due to noise in the calculation of the fundamental matrix,
the essential matrix is not guaranteed to be of rank 2. To
enforce this constraint, we use singular value decomposition
to decompose the essential matrix into its constituent parts,
and then reconstruct it using the following equation:

E = U

1 0 0
0 1 0
0 0 0

V⊤ (7)

E. Estimating Camera Pose from the Essential Matrix

Once the essential matrix has been estimated, the next step
is to estimate the camera pose. The essential matrix is a
representation of the relative pose between the two cameras,
and it can be decomposed into the rotation and translation
components. The decomposition of the essential matrix is
given by the following equation:

E = [t]×R (8)

Sadly, the decomposition of the essential matrix is not
unique, and can result in four possible camera poses. To
resolve this ambiguity, we use the following method:

1) Compute the four possible camera poses using the
essential matrix

2) Triangulate the 3D points for each of the four camera
poses

3) Enforce the cheirality condition
Step 1 is accomplished by decomposing E using SVD

into U, D, and V. The four possible camera poses are then
computed using the following equations:

W =

0 −1 0
1 0 0
0 0 1

1) R1 = UWV⊤ and C1 = U(:, 3)
2) R2 = UWV⊤ and C2 = −U(:, 3)
3) R3 = UW⊤V⊤ and C3 = U(:, 3)
4) R4 = UW⊤V⊤ and C4 = −U(:, 3)

where (:, 3) denotes the third column of the matrix, Ri is a
rotation matrix, and Ci is the camera center. The triangulation
process for the second step will be discussed in the next
section. The output of this process is shown in Figure 3.

The cheirality condition is simply the condition that the 3D
points are in front of the camera. This is enforced by checking
the sign of the depth of the 3D points, and discarding the
camera poses that do not satisfy the condition. The cheirality
condition is given by the following equation:

R(:, 3)⊤(X−C) > 0 (9)

Due to noise, though, Equation 9 is not guaranteed to be
satisfied for all 3D points in the correct camera. To resolve
this issue, we simply accept the camera pose that satisfies the

Fig. 3: Initial triangulation plot with disambiguity, showing all
four possible camera poses

cheirality condition for the maximum number of 3D points.
The threshold for the cheirality condition was also changed to
> 0.1, to account for noise.

F. Linear Triangulation

With two camera poses (Ri, Ci) and the corresponding 2D
points in the images (xi, x′

i) we can calulate X , or the world
point of each correspondence. To find a solution to the problem
of triangulatoin, we begin with the pinhole projection model:[

x
1

]
= αP

[
X
1

]
(10)

where P is the matrix:

P = K[R|t] (11)

which can alternatively be written as:[[
x
1

]
×
P

][
X
1

]
= 0 (12)

We stack Equation 12 for each camera pose and its cor-
respoding image point, and then solve for X using singular
value decomposition. The result of this process is shown in
Figure 5.

G. Non-Linear Triangulation

Given the linearly estimated 3D world points from the
previous step, we refined their locations to minimize the
reprojection error. The linear triangulation method minimizes
the algebraic error, but the reprojection error is a more geomet-
rically meaningful error that can be computed by measuring
the geometrix error between an image points and the world
point projected into its image plane. Since there are likely

Fig. 4: Comparison of projections between non-linear and
linear triangulation for Image 1

nonlinearities in the camera model, this is a more accurate
method for estimating the 3D points. A comparison of the
projections between the non-linear and linear triangulation
methods is shown in Figure 4.

This method did improve the accuracy of the 3D points,
as shown in results section of this phase, in Table I, but the
optimization step was likely not needed, as only in some cases
was the error significantly reduced, and even in those cases the
error to begin with was not that high. This reflects the fact that
the linear triangulation method is already quite accurate.

H. SfM Pipeline for a Single Pair of Images

With all the building blocks in place, we can now summarize
the SfM pipeline for a single pair of images:

1) Use RANSAC to reject outlier correspondences and find
the fundamental matrix

2) Estimate the essential matrix from the fundamental
matrix

Fig. 5: Final reconstruction of the scene using the SfM pipeline
for a single pair of images

3) Estimate the 4 possible camera poses from the essential
matrix

4) Linearly triangulate the 3D points for each possible pose
5) Disambiguate the camera poses using the cheirality

condition
6) Non-linearly triangulate the 3D points to minimize the

reprojection error

This pipline works very well, and an output of the pipeline
is shown in Figure 5.

I. Perspective-N-Points (PnP) and PnP RANSAC

To extend this pipeline to multiple images, we need to
estimate the camera pose for each image. This is accom-
plished using the Perspective-n-Points (PnP) algorithm, which
estimates a camera pose from a set of 3D points and their
corresponding 2D projections. The PnP algorithm can take in
n, hence the name, but we used n = 6 which allows the math
to remain simple.

PnP first consists of forming a linear estimate of the camera
pose using, formed by transforming Equation 10 into the

Fig. 6: Camera 3’s estimated pose using PnP RANSAC

following form:

[
X,Y, Z, 1, 0, 0, 0, 0,−xX,−xY,−xZ,−x
0, 0, 0, 0, X, Y, Z, 1,−yX,−yY,−yZ,−y

]

p11
p12
p13
p14
p21
p22
p23
p24
p31
p32
p33
p34

= 0

(13)
and then stacking it n times for each point used in the linear
PnP. This is then solved using SVD, yielding the projection
matrix P. P is then decomposed into R, and t:

R = K−1P(:, 1 : 3)

t = K−1P(:, 4)
(14)

which is then cleaned up:

U,D,V = SVD(R)

R = UV⊤

t = t/D11

(15)

Finally, if det(R) = −1, we flip the sign of of R and t.
This process yields a decent estimate of the camera pose,

but is very sensistive to noise and outliers. To address this
the RANSAC algorithm is applied, with 6 random points
chosen each iteration, and with inliers being determined using
reprojection error. The result of this process is shown in Figure
6.

Fig. 7: Comparison of reprojected points between non-linear
and linear PnP for Camera 3

J. NonLinear PnP

While the linear PnP RANSAC algorithm is a good start,
it is not perfect. To address this, we use the Levenberg-
Marquardt algorithm to refine the camera pose estimate. The
Levenberg-Marquardt algorithm is a non-linear optimization
algorithm that minimized a sum of squares of residuals. The
residuals for the algorithm are simply given by the difference
between the reprojected points and the true image points:

r = x−PX (16)

which means that Levenberg-Marquardt is minizing the fol-
lowing cost function:

C =

n∑
i=1

∥xi −PXi∥22 (17)

The result of this process is shown in Figure 7.

K. SfM Pipeline for Multiple Images

With PnP added to our toolbox, we can now summarize the
basic SfM pipeline for multiple images:

Fig. 8: Output from 5 differnt view of Unity Hall, without
bundle adjustment

1) Perform the SfM pipline for a single pair of images on
the first two images

2) For each subsequent image:
a) Determine all image points which have a known

3D world-point
b) Estimate the camera pose using PnP RANSAC
c) Refine the camera pose using non-linear PnP
d) Triangulate all points which have a match to a

previos image, and do not already have a known
3D world-point

e) Add the new 3D points to the set of known world
points

The output of this pipeline is shown in Figure 8.
This pipeline may seem fairly straight forward, but looking

closer at the steps for subsequent images reveals a major
challenge: determining which image points do and do not have
a known 3D world-point. This is a non-trivial problem, and is
the focus of the next section.

L. World Point Set Data Structure

To be able to efficiently determine which image points have
a known 3D world-point, we need to store the world points
in a data structure that keeps track of which image points are
associated with each world point. This is accomplished using
a pair of structures:

1) A list of world points and the associated image points
in each image

2) A dictionary the following structure:
a) Keys: image ids (denoted as id1)
b) Value: Dictionary

i) Keys: all image points (ip1) in image id1
ii) Value: Dictionary

A) Color: color of ip1
B) Has WP: boolean indicating if ip1 has a

known 3D world-point
C) Key: image id (id2) of each image with a

match to point ip1
D) Value: matched point (ip2) in image id2

These data structures allow one to efficiently recover the all
matches for a given point, identidied by a (id1, ip1)
pair, and to efficiently recover all matches for a given image,
identified by id1. The correspoding world point list simply
keeps track of every world point and its color, as well as the
image points in each image that are associated with it. This
means the world point list encode the tracks in the set of
images.

A track is a set of image points that are all associated with
the same world point. The world point list and the dictionary
are then used to efficiently determine which image points for
a particular have a known 3D world-point, and to efficiently
determine which points matched with in a point in a particular
image do not have a known 3D world-point, crucial for the
SfM pipeline for multiple images.

M. Bundle Adjustment

The final aspect of the SfM pipeline is bundle adjustment,
which refines the camera poses and 3D points simultaneously
by minimizing the reprojection error of all the image points
which have a known world point. The optimization problem
can be expressed as follows:

min
{Ci,qi}I

i=1,{Xj}J
j=1

I∑
i=1

J∑
j=1

Vij

(
∥xj −PiXj∥22

)
(18)

where Ci and qi are the camera center and rotation quaternion
(used for more stable convergence) for the ith camera, Xj is
the jth world point, and Pi is the projection matrix for the
ith camera, and Vij is a binary matrix that indicates if the jth
world point is visible in the ith image.

This is a slow optimization problem, as it involves a large
number of parameters, but is made feasible by the using a
sparsity matrix for the Jacobian, which is derived from V.
The Trust Region Reflective algorithm is used to solve the
optimization problem.

This formulates the last step of our final pipeline, which is
as follows:

1) Perform the SfM pipline for a single pair of images on
the first two images

2) For each subsequent image:
a) Determine all image points which have a known

3D world-point
b) Estimate the camera pose using PnP RANSAC

c) Refine the camera pose using non-linear PnP
d) Triangulate all points which have a match to a

previos image, and do not already have a known
3D world-point

e) Add the new 3D points to the set of known world
points

f) Perform bundle adjustment for all images/cameras
and world points

Now the part you have been waiting for, the results. The
SfM pipeline described above was applied to 5 images taken
of Unity Hall at WPI. The results of the pipeline with bundle
adjustment is shown in Figure 9, and with final result with
color is shown in Figure 10.

The triangulation reprojection error for each image pair is
before and after nonlinear optimization is shwon in Table I,
the PnP reprojection error for each added view is shown in
Table II, and the bundle adjustment reprojection error each set
of views for which it was performed is shown in Table III.

View 1 View 2 Number of Points Error (Linear) Error (Nonlinear)
1 2 508 1.507424 1.503899
1 3 55 1.996084 1.934641
2 3 184 0.898506 0.897582
1 4 34 1.375734 1.371658
2 4 102 1.216846 1.216223
3 4 629 0.741905 0.587245
1 5 7 1.694281 1.672964
2 5 18 1.669900 1.374472
3 5 104 1.932718 1.340792
4 5 92 1.675483 1.603067

TABLE I: Triangulation reprojection error for each pair of
views, before and after nonlinear optimization.

New View Number Points Error (Linear) Error (Nonlinear)
3 191 25.663625 5.625782
4 390 10.415050 3.000878
5 496 18.373742 7.761963

TABLE II: PnP reprojection error for each added view, before
and after nonlinear optimization.

Views Error (Before) Error (After)
1, 2, 3 1.866829 1.042487
1, 2, 3, 4 1.119583 0.943924
1, 2, 3, 4, 5 1.751347 1.015014

TABLE III: Bundle adjustment reprojection error for all views.

Fig. 9: Final reconstruction of the scene using the SfM pipeline
with bundle adjustment for 5 images of Unity Hall

Fig. 10: Final reconstruction of the scene using the SfM
pipeline for multiple images

II. PHASE 2: NEURAL RADIANCE FIELDS (NERF)

In Phase 2, we implemented the well-known NeRF model,
which is a method for synthesizing novel views of complex
scenes. NeRF is a fully-connected deep neural network that
takes 5D coordinates encoding position and view direction,
and outputs the radiance emitted at the position in the view
direction. The model was trained on a set of images of a scene
and the associated camera extrincs for each image, and can was
used to render novel views of the scene from any viewpoint.
We implemented the NeRF model as described in the original
NeRF paper [1].

A. Data Loading

Before being able to train the network, we needed to be
able to produce sample rays with a known color. This was
accomplished by simply creating one ray for each pixel in an
image. The direction of the ray was determined by assuming
the principal point was in the center of the image, and using
the known focal length of the camera in pixels. The origin of
the rays for a particular image were shifted to the origin of
the camera, and the ray directions were rotated by the camera
rotation the camera of the frame. For a dataset of N images,
each with width W and height H , the result would be a full
dataset of N×W×H rays. During training a random subset of
batch_size (a hyperparameter) rays were selected from the
entire set. For predictions, rays were generated from a given
camera position, image size, and focal length, using the same
process as used for input data.

NDC Ray Space: For the forward facing scenes which we
were dealing with, rays can be embedded into NDC ray space.
This technique was only applied to the ship dataset, as when
applied to the lego dataset, the networks trained to around
21 PSNR, and then did not train anymore regardless of doing
more iterations. For the ship dataset, the effect of the transform
was to move the sampled points into a wider range of values,
thus allowing the network to learn more effectively. The details
for how this technique were implemented are explained in the
original nerf paper.

B. Point Sampling for NeRF

The nerf network takes in points and directions, not the rays
in dataset, and so sampling along the rays is performed. At
the most basic level, the region between the distances of near
and far along each ray are split into N_coarse bins, and
a random point from bin is selected. This is performed for
each ray in the training batch, and then all points an rgb and
σ value are predicted for each point. These are then used in
a radiance rendering pipeline to calculate the predicted color
for the ray, on which loss can then be calculated. In practice
this means a set of rays of shape B × (3 + 3) (a 3 vector
for position and 3 vector for direction) is expanded to a set
of points and directions of shape B × N coarse × (3 + 3),
passed into the network as B ∗N coarse× (3+ 3), and then
reshaped back to B× (N coarse)× (3+3), and finally using
the radiance volume rendering technique collapsed into just

Fig. 11: NeRF Network Architecture

B × 3, which are the colors of the rays. This pipeline is used
while training and rendering images.

C. Positional Encoding

In order for the network to learn fine detail in the model, the
points passed into the network must be encoded into a higher
dimension, which is done via positional encoding. This step
is performed by the network itself, and not as a preprocessing
step. Each ray is expanded from a 3 vector position x and 3
vector direction d via the following transform:

γ(x) = (sin(20πx), cos(20πx),

. . . ,

sin(2L−1πx), cos(2L−1πx))

(19)

which is applied to each coordinate value in x and each
component of d. This gives rise to two hyperparameters,
namely pos_enc_x and pos_enc_d, which give the value
of L for x and d respectively.

D. TinyNeRF

To initially test and validate the implementation implemen-
tation our data loading, we built a simpler implementation
of NeRF, called TinyNeRF implementation, which is a single
four-layer fully-connected network. It is designed to be easy
to train on, and to allow for quick iteration and debugging
which helped us ensure that the our model was able to learn
to render novel views of a scene from a set of images.

1) Training: The network architecture is shown in Fig-
ure 12. This network was trained with 100 images of size
100 × 100 , with hyperparameters batch_size = 1024,
pos_enc_x = 6 and pos_enc_x = 4. The optimizer
used was Adam, with default parameters, and a learning rate
of 5× 10−3

Fig. 12: TinyNeRF Network Architecture

E. NeRF Model

The main NeRF model is a set of two fully-connected
networks, one for finding the coarse colors for each point,
and one for finding the fine colors, which uses the coarse
network and estimates the final colors for the output image.
The network architecture is shown in Figure 11.

1) Hierarchical Sampling: The input points for the coarse
network are exactly as discussed in previously, but the fine
network is a little different. Based on the points with the
highest density predicted by the coarse network, an extra
N_fine points are sampled along each ray, using inverse
transform sampling to focus the extra samples around the
parts of the ray which intersect the object being learned (as
predicted by the coarse model). This means that the fine
network is trained on N coarse + N fine points for each
ray, as the samples locations initially used for the coarse
network are added to the points sampled using the hierarchical
sampling method. The specifics of this technique are described
in the original NeRF paper. Both networks used the same
hyperparameters.

2) Training: This network was trained with 800 ×
800 images, with hyperparameter batch_size = 4096,

TABLE IV: NeRF Metrics

PSNR↑
Lego Lego (No Positional) Ship

Original 32.54 27.75 28.65
Ours 28.944 25.951 20.3

SSIM↑
Lego Lego (No Positional) Ship

Original 32.54 27.75 28.65
Ours 0.9629 0.9295 XX

N_coarse = 64, N_fine = 128, pos_enc_x = 10,
pos_enc_x = 4. The optimizer used was Adam, with de-
fault parameters, and a learning rate of 5×10−4 which decayed
exponentially to 5× 10−5 over 250000 iterations.

F. Results and Discussion

When rendering the Lego model, the reconstructed images
were very sharp, with low amounts of noise (albeit higher
than the original NeRF paper implementation). Reflections
and complex lighting conditions were captured well, as were
fine details. The accuracy of the output depended on multiple
factors, and one such factor was the use of positional encoding.
When using positional encoding for the Lego dataset, the
model was able to capture the fine details of the structure,
such as the individual studs on the top of the Lego bricks.
However, when positional encoding was removed, the model
was not able to capture the fine details of the model, and the
output was much more smoothed, as if there was motion blur.
The final PSNR and SSIM results are reported in Table IV.

When training on the ship dataset, which had even more
complex lighting scenarios with opaque water and very thin
rigging, the model had a much more difficult time. Our outputs
clearly show a ship, but only the larger sails and the general
shape of the ship are captured. The water is not captured well
at all. This was trained with the same parameters as the Lego
dataset, and the only difference was the dataset itself, so it is
clear that the complexity of the dataset has a large impact on
the model’s ability to capture the scene.

REFERENCES

[1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, and R. Ng, Nerf: Representing scenes
as neural radiance fields for view synthesis, 2020. arXiv:
2003.08934 [cs.CV].

(a) Lego Dataset Image

(b) Lego Output with Positional Encoding

(c) Lego Output without Positional Encod-
ing

Fig. 13: Lego NeRF Outputs

(a) Ship Dataset Image

(b) Ship NeRF Output

Fig. 14: Ship NeRF Outputs

Fig. 15: Validation Loss During Training on Lego Dataset

Fig. 16: Validation Loss During Training on Lego Dataset
Without Positional Encoding

Fig. 17: Validation Loss During Training on Ship Dataset

