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INTRODUCTION

In this report, we will provide a comprehensive analysis of
our implementation of the NeRF network. NERF, short for
Neural Radiance Fields, embodies a sophisticated framework
encapsulated within a fully connected network architecture.
This neural network operates seamlessly, with its input
characterized by a unified continuous 5D coordinate system,
encompassing spatial positions denoted by (x, y, z), coupled
with viewing directions represented by (θ, ψ) and provides
the volume density and the RGB pixel values corresponding
precisely to the provided viewing direction as outputs. We
use the lego and the ship dataset from the official dataset
obtained from the original author.

NeRF uses classical volume Rendering techniques where
we consider each point to be a ray that starts from the
camera center and passes through the pixel to the world. Let’s
talk about the premise of the paper. You have images of a
particular scene from a few specific viewpoints. Now you
want to generate an image of the scene from an entirely new
view. This problem falls under novel image synthesis, The
immediate solution to novel view synthesis that comes to our
mind is to use a Generative Adversarial Network (GAN) on
the training dataset. With GANs, we are constraining ourselves
to the 2D space of images. The immediate solution to novel
view synthesis that comes to our mind is to use a Generative
Adversarial Network (GAN) on the training dataset. With
GANs, we are constraining ourselves to the 2D space of
images. Next question asked is ”Why not capture the entire
3D scenery from the images itself?” We are now looking at
a transformed problem statement. From novel view synthesis,
we have transited to 3D scene capture from a sparse set of 2D
images.

This new problem statement will also serve as a solution
to the novel view synthesis problem. How difficult is it to
generate a novel view if we have the 3D scenery at our
hands? Note that, NeRF is not the first to tackle this problem.
Its predecessors have used various methods, including Con-
volutional Neural Networks (CNN) and gradient-based mesh
optimization. However, according to the paper, these methods
could not scale to better resolution due to higher space and
time complexity. NeRF aims at optimizing an underlying

continuous volumetric scene function.

BACKGROUND AND DATASET STRUCTURE

Imagine this. You are out with your camera and spot a
beautiful flower. You think about the way you want to capture
it. Now it is time to orient the camera, calibrate the settings,
and click the picture. This entire process of transforming the
world scene into an image is encapsulated in a mathematical
model commonly called the forward imaging model. We can
visualize the model in Figure 1.

Fig. 1. Forward Imaging Model

The forward imaging model starts from a point in the
world coordinate frame. We then transform this to the camera
coordinate frame using coordinate transformation. After that,
we use projection transformation to transform the camera
coordinates onto the image plane.
After unzipping the dataset, you will find three folders con-
taining images: train, val and test and three files containing the
orientation and position of the camera: transforms train.json,
transforms val.json and transforms test.json. The json file
has two parent keys called camera angle x and frames. We
see that camera angle x corresponds to the camera’s field
of view, and frames are a collection of metadata for each
image (frame). Each frame is a dictionary containing two keys,
transform matrix and file path. The file path is the path to the
image (frame) under consideration, and the transform matrix
is the camera-to-world matrix for that image.

METHOD

We begin with a sparse set of images and their
corresponding camera metadata (orientation and position).
Next, we want to achieve a 3D representation of the entire
scene. The steps for NeRF can be visualized in the following



steps:

• Generate Rays: In this step, we march rays through each
pixel of the image.

• Generate Sample points: In this step we sample points
(a 1,a 2,a 3,. . . ,a n) on the rays. We must note that
these points are located on the rays, making them 3D
points inside the box. This is done for each batch before
providing as an input to the network.
Each point has a unique position (x, y, z) and a direction
component α linked. The direction of each point is the
same as the direction of the ray.

• Positional Encoding: Positional Encoding is a popular
encoding format used in architectures like transform-
ers. This paper[2] suggest that deep networks are bi-
ased toward learning low-frequency functions. To bypass
this problem NeRF proposes mapping the input vector
(x,y,z,θ,ϕ) to a higher dimensional representation. Since
the 5D input space is the position of the points, we are
essentially encoding the positions from which it gets the
name.

• Deep Learning: We pass these points into an Multi-
Layer Perceptron (MLP) and predict the color and density
corresponding to that point.

• Volume Rendering: Let’s consider a single ray and send
all the sample points to the MLP to get the corresponding
color and density. After we have the color and density of
each point, we can apply classical volume rendering to
predict the color of the image pixel through which the
ray passes.

• Photometric Loss: The difference between the predicted
color of the pixel and the actual color of the pixel makes
the photometric loss. This eventually allows us to perform
backpropagation on the MLP and minimize the loss.

Fig. 2. Rays passing through the image and traversing the 3D scene

RAY GENERATION

As discussed in precious section, we generate rays passing
through each pixels. These rays, defined by their origins
(camera positions) and directions (pixel coordinates), serve as
probes into the scene’s volumetric structure. By systematically

Fig. 3. NeRF Network

sampling along these rays at discrete intervals, NeRF gathers
information about the scene’s geometry and appearance. This
comprehensive sampling strategy enables NeRF to reconstruct
intricate details and capture subtle nuances within the scene,
facilitating the synthesis of realistic and immersive visualiza-
tions. We have specified the near and far bounds as 2 and
6 respectively, to form a cube inside which the 3D structure
lies. For training, we have considered 256 sample points on
each ray lying between the near and far bounds. After getting
these samples, we perturb the samples a little randomly which
enables us to have a more even spread throughout the ray.
These sample points are then passed to the model.

NETWORK

We have used the network mentioned in the official NeRF
paper [1] but we have only used one network instead of both
coarse and fine networks. The architecture can be seen in figure
4. The implementation is a fully connected network and has
hidden layers with 256 channels each and a ReLU after it.
After 4 layers, there is a skip connection that concatenates
the input to the fifth layer. An additional layer outputs the
density and is then concatenated with the viewing direction. It
is then processed by an additional fully connected layer with
128 channels which gives the RGB output. For dataloading, we
read all the images of the train or test set provided and convert
them to a lower resolution (200,200) for faster computation.
We then generate rays for all the images, convert them to 2D
tensors and provide them to the torch dataloader which will
provide all the values according to the batch size as an input
for the network. In the network, firstly, all sample points are
calculated for each ray provided by the dataloader, positional
encoding is done and then the data is given to the network. The
MSE loss function is used to calculate the loss based on the
output generated by the network. Renderer is used to render
the output generated by the network.

• Number of samples per ray: 256
• Learning rate: 0.0005
• Optimizer: Adam
• Loss: MSE loss
• Near, Far bounds: 2, 6

OUTPUTS

The Peak signal to noise ratio (PSNR) and Structural index
similarity (SSIM) are the two measuring tools that are widely



Fig. 4. Average PSNR and SSIM Results on Test set

used in image quality assessment. The values obtained after
10 Epochs (resource constraint) are shown in figure 4. Also
the data are listed in the table below.

TABLE I
PHOTOMETRIC LOSS

Method Loss
Peak signal to noise ratio (PSNR) 18.11
Structural index similarity (SSIM) 0.49

The outputs of the Test set for the Lego dataset can be seen
in figure 5. The rendered images are compared with the ground
truth and it is evident that the network does an adequate job
of reproducing the novel views.

Fig. 5. Ground Truth (Left) and Rendered Image(Right)

However, this is done using positional encoding. Without

positional encoding, the outputs are less than desirable as can
be seen in figure 6.

Fig. 6. Rendered images without positional encoding(left) and with positional
encoding(Right)

The output images for the ship dataset are shown in figure
7.

Fig. 7. Ground Truth(Left) and Rendered Image(Right)



OBSERVATIONS:

An observation is that with the same pretrained model, when
the test images are queried with different sample points per
rays, the output changes drastically. This can be seen in figure
8.

Fig. 8. Rendered images with 32 sampling points(left) and 128 sampling
point(right) per ray

Another observation is that there are some rendered images
which has artifacts that are undesirable. These can be seen in
figure 9.

Fig. 9. Bad rendering of images with artifacts

Overall, looking at the Lego and the Ship rendered outputs,
it can be seen that the result are adequate but can be improved.
There are 2 main improvements that can be done here.

1) The image resolution is reduced to (200,200) from the
original (800,800). This is done to reduce the training
time but as a result of this, the output resolution is less
so the image does not have the sharpness and clarity that
is expected.

2) The training can be done for more epochs to improve
the output and get to get rid of the artifacts that have
been generated.

CONCLUSION:

It can be concluded that the NeRF network can generate the
novel views based on the input train images and can generate a
gif of the object in consideration in 3D. NeRF is an example of
groundbreaking research in both Deep Learning and Computer
Graphics. It advances the field a great deal by achieving results
that very few methods have been able to do thus far.
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