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Abstract—This study replicates and extends Neural Radiance
Fields (NeRF) for synthesizing novel scene views from multiple
photographs. By leveraging NeRF’s neural network architecture,
we learn a continuous, volumetric representation of scenes from
sets of images and their camera poses. This methodology is
tested on three datasets, including two pre-existing and one self-
compiled, demonstrating our implementation’s adaptability. A
testing pipeline evaluates model performance on new viewpoints,
using metrics like Peak Signal-to-Noise Ratio (PSNR) and Struc-
tural Similarity Index Measure (SSIM) for quality assessment.
Results underline NeRF’s capability in photorealistic rendering
from limited observational data, contributing to computer vision
research.

Index Terms—Image-based Rendering, Volume Rendering,
Neural Radiance Fields, Scene Reconstruction, Volumetric Ren-
dering, Positional Encoding

INTRODUCTION

The ability to synthesize novel views of scenes has signif-
icant implications across various fields, including computer
graphics, virtual reality, and augmented reality. Traditional
methods often rely on explicit geometric representations or
depth information, limiting their applicability to scenes with
simple geometry and appearance. In contrast, recent advance-
ments in neural rendering have shown promising results in
synthesizing realistic views of complex scenes without explicit
geometric priors.

This paper builds upon the concept of neural radiance fields,
leveraging a fully-connected deep network, whose input is
a single continuous 5D coordinate (spatial position: (x, y,
z) and viewing direction: (θ, ψ)) and output is the volume
density and the RGB pixel values at that viewing direction,
to represent scene properties continuously. By optimizing this
representation using a sparse set of input views, the proposed
method can synthesize photorealistic novel views of scenes
with intricate geometry and appearance.

I. NEURAL RADIANCE FIELDS - NERF

A. Dataset

The datasets provided are retrieved from the original
datasets used by the original author of the NeRF implementa-
tion. For our project, we have used the Lego and ship datasets
from the above. Along with these, we have also implemented
a NeRF implementation on a dataset created on our own.

Fig. 1: NeRF Network Architecture

Fig. 2: An overview of NeRF representation and rendering
procedure.

B. NeRF Architecture

Neural Radiance Fields (NeRF) [Figure 2] introduce a
groundbreaking method for synthesizing photorealistic 3D
scenes from a sparse set of images. This approach relies
on a fully connected deep neural network to model a scene
as a continuous, high-dimensional function that maps 5D
coordinates (comprising 3D spatial positions and 2D viewing
directions) to color and volume density. The model is trained
using a combination of photometric loss and structural simi-
larity metrics to ensure accurate reconstruction of the scene
geometry and appearance. The original NeRF architecture
meticulously renders complex scenes with intricate lighting
and material properties by integrating the contributions of light
along camera rays, a process enabled by differentiable volume
rendering. This technique allows for the creation of detailed
3D reconstructions from limited photographic data, capturing
nuances of light and shadow with high fidelity.

C. Our Architecture

Building upon the original NeRF framework, we imple-
mented modifications to adapt the architecture to our specific



project needs, focusing on simplification and computational
efficiency. Our version includes:

1) A reduced network width of 64 channels, optimizing
processing speed while retaining the ability to capture
essential scene details.

2) Positional encoding limited to 16 frequencies, balanc-
ing the model’s spatial awareness with the need for a
streamlined input representation.

3) An implementation focused solely on the coarse net-
work, foregoing the fine-resolution network to enhance
training and rendering speed.

4) Adherence to the original 8-layer network structure, en-
suring depth consistency while simplifying other aspects
of the model.

5) Inspiration drawn from tinynerf, a variant proposed by
the original authors, guiding our efforts to achieve a
more compact and efficient implementation.

These modifications enable our architecture to efficiently
produce high-quality 3D renders from sparse image sets,
balancing detail and computational demand to meet the unique
challenges of our project.

II. RESULTS ANALYSIS

1) Efficiency and Quality of 3D Models: Our modified
NeRF model demonstrated remarkable efficiency, producing
high-quality 3D models within just 40 iterations for both
datasets. This performance is a testament to the effectiveness
of our implementation. While accuracy and model quality
improved up to approximately 500 iterations, further training
led to overfitting, resulting in quality degradation due to
distortions. Please refer to Figure 6.

2) Impact of Positional Encoding: A critical comparison
between rendered outputs with and without positional encod-
ing highlighted its significance. Positional encoding not only
enhanced the quality of the renders but also expedited the
rendering process, confirming its pivotal role in achieving
superior NeRF outcomes.

3) Challenges in Model Training: We encountered a chal-
lenging issue where the neural network would occasionally
enter an indefinite execution state without producing viable
outputs. This problem was traced back to the initial training
seed. Implementing a random.seed() function allowed us
to substantially mitigate this issue, highlighting the sensitivity
of model training to initial conditions.

4) Invaluable Insights into Image Handling: Throughout
the debugging process, we gained important insights into
image handling in deep learning contexts. We learned the im-
portance of image normalization, which simplifies mathemat-
ical operations, and discovered techniques for manipulating
a single image element through tensors, varying shapes, and
types within a loop for efficient and effective processing. This
knowledge was crucial for enhancing our model’s performance
and reliability.

5) Model Evaluation and Dataset Limitations: Our ini-
tial attempts at reconstructing the desired 3D models using
the Neural Radiance Fields (NeRF) approach have not yet

((a)) Pose 1

((b)) Pose 2

((c)) Pose 3

Fig. 3: Lego Testing - Original vs Generated

achieved the desired level of accuracy. This suggests a po-
tential for significant improvement through extended train-
ing periods. However, upon a thorough evaluation of our
experimental outcomes, we have identified that the primary
impediments to achieving optimal results lie within the dataset
itself. Please refer to Figure 11 and Figure 12.

Various dataset-related factors contribute to the observed
reconstruction inaccuracies. In particular, inconsistencies in
lighting conditions, variations in background colors, and the
presence of blurriness within the images collectively introduce
artifacts that adversely affect the model’s performance. These
issues highlight the critical importance of dataset quality in
successfully applying NeRF techniques.

Given these insights, we believe that refining the dataset
to ensure uniform lighting, consistent background colors, and
sharp imagery would substantially enhance the fidelity of the
3D reconstructions. Prioritizing the creation of such an ideal
dataset in future research endeavors will be essential to fully



leverage the capabilities of NeRF for high-quality 3D model
synthesis.

((a)) After 1 Iteration ((b)) After 10 Iterations

((c)) After 100 Iterations ((d)) After 200 Iterations

Fig. 4: Lego Dataset Training Trends

III. CONCLUSION

1) Successful Implementation and Refinement of NeRF:
The successful implementation and refinement of NeRF has
illuminated its potential for crafting photorealistic scenes from
a sparse collection of images. This accomplishment stands as a
testament to the technique’s utility in synthesizing high-fidelity
views.

2) Extensive Analysis Across Varied Datasets: By extend-
ing our analysis across three varied datasets, our project not
only showcased the model’s robustness but also its adaptabil-
ity, reinforcing the versatility of our approach.

3) Establishment of a Testing Pipeline: The establishment
of a testing pipeline marked a significant stride towards quan-
titatively assessing the model’s ability to generate images from
novel viewpoints. Metrics such as PSNR and SSIM provided a
lens through which the quality of these images was measured,
offering empirical evidence of the model’s performance.

4) Critical Roles of Proper Initialization and Advanced
Image Processing: Throughout this project, the critical roles
of proper initialization and advanced image processing tech-
niques were underscored. These elements were pivotal in en-
hancing the model’s output, contributing to our understanding
of efficient and effective 3D scene reconstruction.

5) Conclusion: In weaving together these threads of in-
novation and discovery, our project not only affirms the
capabilities of NeRF in achieving photorealistic renderings
from limited data but also enriches the tapestry of computer

((a)) Epochs vs Loss

((b)) Original vs Rendered - PSNR

((c)) Original vs Rendered - SSIM

Fig. 5: Lego Training Results

vision research, laying groundwork for future explorations in
3D scene synthesis.
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((a)) Iteration 1000 ((b)) Iteration 2000

((c)) Iteration 3000 ((d)) Iteration 4000

Fig. 6: After achieving a satisfactory level of accuracy, further
iterations did not result in improved performance. Instead,
we observed the distortion of rendered rays, indicative of
overfitting in the model.

((a)) Training output at Iteration 1800

((b)) Epoch vs Loss

Fig. 7: Failed Training Model of Ship Dataset: We encountered
a failed model during the training of the Ship dataset. Despite
running nearly 2000 iterations, the results were minimal, if not
negligible. Upon investigation, we identified the issue with the
input image’s data type (float64) and color range (0-255). Once
these issues were acknowledged and addressed, we were able
to achieve proper outcomes as observed above.



((a)) Iteration 1 ((b)) Iteration 1 (WPE) ((c)) Iteration 3 ((d)) Iteration 3 (WPE)

((e)) Iteration 12 ((f)) Iteration 12 (WPE) ((g)) Iteration 23 ((h)) Iteration 23 (WPE)

((i)) Iteration 45 ((j)) Iteration 45 (WPE) ((k)) Iteration 73 ((l)) Iteration 73 (WPE)

((m)) Iteration 100 ((n)) Iteration 100 (WPE) ((o)) Iteration 200 ((p)) Iteration 200 (WPE)

Fig. 8: Ship Dataset Training Trends - Positional Encoding vs Without Positional Encoding (WPE)



((a)) Pose 1 ((b)) Pose 1 (WPE)

((c)) Pose 2 ((d)) Pose 2 (WPE)

((e)) Pose 3 ((f)) Pose 3 (WPE)

Fig. 9: Ship Testing Results - Original vs Generated - Positional Encoding vs Without Positional Encoding (WPE)



((a)) Ship - PSNR ((b)) Ship (WPE) - PSNR

((c)) Ship - SSIM ((d)) Ship (WPE) - SSIM

((e)) Ship - Epoch vs Loss ((f)) Ship (WPE) - Epoch vs Loss

Fig. 10: Ship Training Results - Postional Encoding vs Without Positional Encoding



((a)) Iteration 1

((b)) Iteration 200

((c)) Iteration 600

((d)) Iteration 1000

Fig. 11: The training trend of our own dataset seemed very
promising with satisfying levels of reconstruction.

Fig. 12: Own Dataset - Training Results - Epochs vs Loss

((a)) Ground Truth Sample ((b)) Ground Truth Sample

((c)) Rendered Image ((d)) Rendered Image

Fig. 13: Own Dataset Test Results: While the model’s re-
construction is currently faintly visible, further training may
enhance its accuracy. However, the primary issue lies within
the artifacts present in our dataset, such as lighting inconsis-
tencies, background color variations, and blurriness. Improving
the dataset quality is crucial for achieving better results.



Fig. 14: Neural Network Architecture


