
NeRF: Neural Radiance Fields
Computer Vision (RBE549) Project 2

Tejas Rane
MS Robotics Engineering

Worcester Polytechnic Institute
Email: turane@wpi.edu

Hrishikesh Pawar
MS Robotics Engineering

Worcester Polytechnic Institute
Email: hpawar@wpi.edu

Abstract—The report outlines the end-to-end implementation
of the NeRF paper.

I. PHASE 2: NEURAL RADIANCE FIELD (NERF)

In this phase, the primary objective is to implement the
NeRF model 1, enabling the reconstruction of a volumetric
scene representation through the combination of a corpus of
images obtained from different vantage points. Our execution
for NeRF is outlined as follows:

1) Data Pre-processing.
2) Network Architecture - Multi-Layer Perceptron (MLP).
3) Volume Rendering
4) Training Implementation Details.
5) Results and Discussion.
Subsequent sections detail the methodologies adopted

within each segment.

A. Data Pre-processing

Datasets Utilized:
1) Lego
2) Ship
The chosen datasets comprise an array of images alongside

their corresponding camera poses, encapsulated through trans-
formation matrices incorporating the spatial translation and
rotation from the camera coordinate framework to the world
coordinate system.

The data pre-processing stage employs classical volume
rendering techniques, wherein each pixel in the images is
interpreted as a ray within the three-dimensional space. The
transformation from pixel coordinates (u, v) to normalized
coordinates (X,Y, 1) with respect to the camera’s center is
initialized. The ray equation is defined as follows:

r(t) = o+ td (1)

Here, o represents the origin of the ray, corresponding to
the pixel location in the three-dimensional space, d denotes
the ray direction as a unit vector from the camera’s center
to the image pixel, and t is a parameter of the equation,
sampled at intervals. Leveraging the rotation matrix derived
from the transformation matrix representing the camera-to-
world rotation and translation, the ray direction is transformed

1NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis)

into the world coordinate system and subsequently normalized
to obtain a unit vector. The transformation of the image rays
is depicted in Fig. 1 2

Fig. 1: Rays transformation from camera to world coordindates

To facilitate model input post ray generation, we imple-
mented the following data architecture:

1) Ray Positions: Expressed as a tensor of dimensions N×
(H ×W )× 3, where N signifies the number of images,
while H and W denote the image height and width,
respectively.

2) Ray Directions: Analogously, a tensor of size N×(H×
W )× 3 encapsulates the direction vectors.

3) Target Pixel Values: The corresponding color values are
encapsulated within a tensor of dimensions N × (H ×
W )× 3.

These tensors were aggregated to form the final model input,
a concatenated tensor of shape N × (H × W ) × 6, merging
ray positions (first three dimensions) and directions (next three
dimensions), which were subsequently segmented into batches
for the training process.

B. Network Architecture - Multi-Layer Perceptron (MLP)

We employed a Multi-Layer Perceptron (MLP) with a series
of fully connected layers, designed to process continuous 5D
coordinates, comprising spatial location (x, y, z) and viewing

2Deep Dive into NeRF (Neural Radiance Fields)

https://arxiv.org/pdf/2003.08934.pdf
https://dtransposed.github.io/blog/2022/08/06/NeRF/


direction (θ, ϕ) to predict volume density and view-dependent
emitted radiance. Refering to the model architecture in Fig.
11 key aspects are as follows:

• The architecture utilizes embeddings for spatial position
and viewing direction, denoted as Lpos and Ldir, set to
10 and 4 respectively. These values enable the MLP to
discern high-frequency features within the scene.

• Initially, the input layer enhances the input vector’s
dimensionality using positional encoding. Following this
enhancement, a sequence of fully connected layers pro-
cesses the spatial information. Post these initial layers, the
viewing direction is concatenated to the feature vector for
subsequent processing and radiance prediction.

• The MLP is characterized by hidden layers with dimen-
sions of 256 and 128 for initial and concatenated layers,
respectively.

• Ultimately, the network bifurcates its output to deliver
volume density σ and RGB color. It employs ReLU and
sigmoid activations for each output type to maintain the
physical validity of these predictions.

1) Positional Encoding: Positional encoding is pivotal in
allowing the NeRF model to capture high-frequency details
effectively:

γ(x) = [sin(20πx), cos(20πx),

. . . , sin(2L−1πx), cos(2L−1πx)]
(2)

where L reflects the frequency bands, chosen separately
for spatial (Lpos) and directional (Ldir) embeddings. This
encoding augments the MLP’s ability to detect and utilize
minute variations within the input, aiding in precise scene
reconstruction.

C. Volume Rendering

The crux of visualizing the NeRF model’s output is the
volume rendering algorithm, which transforms the neural
representation into a 2D image. The process is outlined as
follows:

1) Ray Sampling: Discretize each ray from camera origin
o through the scene within the bounds [tn, tf ] into N
segments and perturb these samples.

2) Density and Color Estimation: For each sample, the
MLP predicts the RGB color and volume density, of-
fering a discrete approximation of the scene’s radiance
field.

3) Transmittance Computation: Evaluate the accumu-
lated transmittance T (t) along the ray to determine how
much light reaches each point.

4) Radiance Accumulation: Aggregate the contributions
of all samples along the ray to compute the final pixel
color, considering both direct radiance and accumulated
transmittance.

Formally, the expected color C(r) captured by the camera
for a given ray r is computed using the integral:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t), d)dt (3)

where T (t) = exp
(
−
∫ t

tn
σ(r(s))ds

)
represents the trans-

mittance. We employ stratified sampling for numerical estima-
tion:

Ĉ(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci (4)

where δi = ti+1 − ti denotes the segment length, and
Ti and ci are the transmittance and color at each sample.
This integration strategy ensures a continuous and detailed
rendering of the scene.

By embedding these mechanisms into the NeRF model, we
synthesized images from novel viewpoints.

D. Training Implementation Details

The implemented training regimen refines the neural net-
work parameters to minimize the loss between the rendered
images and the corresponding ground truth pixel values.

1) Loss Function Computation: The loss function central to
our model’s training is the mean squared error (MSE) between
the predicted RGB values and the ground truth pixel values
for a set of rays:

L =
1

N

N∑
i=1

∥∥∥C(ri)− Ĉ(ri)
∥∥∥2 , (5)

where C(ri) and Ĉ(ri) represent the ground truth and
predicted color for the i-th ray, respectively, and N is the
number of rays in the batch.

2) Training Hyperparameters: Training hyperparameters
are outlined as follows:

• Epochs: 20
• Batch Size: 1024
• Near Bound tn: 2
• Far Bound tf : 6
• Samples along ray: 192
• Learning Rate (lr): 5× 10−4

• Optimizer: Adam
• Learning Rate Scheduler: Employed with a gamma

value of 0.5 and milestones set at epochs 2, 4, and 8
to adjust the learning rate adaptively.

The training progression is depicted in Fig. 10

E. Results and Discussion

The training process was executed on two distinct datasets:
Lego and Ship with image dimensions to be 400 × 400.
Utilizing an A30 computational resource, the model underwent
training spanning over 315k iterations, which amounted to
approximately 22 hours of training time. This process included
the implementation of positional encoding to enhance the
model’s ability to capture high-frequency details. Fig 2 and
3 show the training PSNR and training loss plotted against
the number of iterations (x1000). We also attempted training
the model with the complete 800×800 resolution of the image,
but that took approximately 27 hours for just 128k iterations.
Table I encapsulates the Structural Similarity Index Measure



(SSIM), and Peak Signal-to-Noise Ratio (PSNR) across test
dataset comprising of 200 images.

Dataset SSIM PSNR
Lego 0.87 29.885
Ship 0.83 28.145

TABLE I: Average SSIM, and PSNR values

We also tried training the NeRF model without positional
encoding. We observed that the training does not converge, and
might need further parameter tuning to generate the desired
results. Fig 4 and 5 show the training PSNR and training loss
plotted against the number of iterations (x1000) for the training
trial without positional encoding.

Fig. 2: Training PSNR vs Iterations (x1000), with positional
encoding, Lego dataset

Fig. 3: Training Loss vs Iterations (x1000), with positional
encoding, Lego dataset

Fig. 4: Training PSNR vs Iterations (x1000), without positional
encoding, Lego dataset

Fig. 5: Training Loss vs Iterations (x1000), without positional
encoding, Lego dataset

Fig. 6 depicts the novel views for the lego dataset and Fig.
7 depicts the novel views for the ship dataset. Fig. 8 and Fig.
9 depicts the comparison of the test dataset with our rendered
novel views.



Fig. 6: Lego Dataset Novel Views (generated from out model) Fig. 7: Ship Dataset Novel Views (generated from out model)



Fig. 8: Lego Dataset Comparison

Fig. 9: Ship Dataset Comparison

Fig. 10: Training Progression



Fig. 11: Model Architecture


	Phase 2: Neural Radiance Field (NeRF)
	Data Pre-processing
	Network Architecture - Multi-Layer Perceptron (MLP)
	Positional Encoding

	Volume Rendering
	Training Implementation Details
	Loss Function Computation
	Training Hyperparameters

	Results and Discussion


