
Project 2 - Buildings built in minutes - SfM and
NeRF

Phase 2
Manoj Velmurugan∗, Rishabh Singh†

Robotics Engineering
Worcester Polytechnic Institute

Email: ∗v.manoj1996@gmail.com, †rsingh8@wpi.edu

Abstract—This project introduces an effective implementation
of Neural Radiance Fields (NeRF) for 3D scene reconstruction
using 2D images. Utilizing deep learning, NeRF synthesizes
photorealistic scenes by interpreting light and color data. The
approach combines spatial details with color information, leading
to high-quality renderings.

I. INTRODUCION

In recent years, the field of computer vision has witnessed
remarkable advancements, with deep learning playing a pivotal
role in these developments. One of the most significant break-
throughs is the concept of Neural Radiance Fields (NeRF),
introduced in the groundbreaking paper ”NeRF: Representing
Scenes as Neural Radiance Fields for View Synthesis.” This
technique revolutionizes the way we reconstruct and under-
stand 3D scenes from 2D images.

In this project, we understand NeRF by implementing the
methodology as described in the original paper. Our objective
is to not only replicate but also to understand and validate the
viability of this approach in a real-world context. To achieve
this, we utilize two types of datasets: the widely recognized
synthetic LEGO dataset to verify and compare our work with
others and then to use our custom dataset collected for this
project.

II. SUMMARY

• NeRF algorithm was implemented from scratch. Our
implementation is slightly different and uses direction
vector instead of using azimuth and elevation.

• The very first implementation of our NERF did raytracing
batchwise for each image. It should run faster theoreti-
cally but it required more than 24 GB VRAM. Hence we
had to breakdown (chunk) the rendering process of each
image and stick them later (for loop).

• Training loss and images were logged using wandb to get
realtime stats.

• Different learning rates, encoding (positional and no
positional encoding), sampling (uniform and uniform
random) were tested for ship and lego datasets. Decent
performance was obtained for test dataset.

• (Bonus) Lastly we performed the training on a custom
dataset of a flip-flop, collected using phone and colmap.

III. DATASET

In this project, we initially utilized a synthetic dataset
created with Blender, which was provided by the original
authors of the NeRF technique. To evaluate our model, we
selected two distinct datasets from this collection. The first
one we chose was the ”LEGO” dataset. Following that, we
opted to work with the ”Ship” dataset. We wrote our own
parser to work with this dataset.

Fig. 1: LEGO Dataset

Fig. 2: Ship Dataset

IV. GENERATING RAYS

We employ a traditional volume rendering technique, view-
ing each pixel in an image as a ray within the 3D space.
We begin by transforming the pixel coordinates (u, v) into



Parameter Value
Optimizer Adam

Learning Rate 5e-4
Image Size (100, 100)

Frequency Count 64
Loss MSE
GPU H100 (turing), RTX3090

Batch Size 10000

TABLE I: Network Training Parameters

normalized coordinates (X, Y, 1), relative to the camera’s
center.

The formula for a standard ray can be expressed as: r(t) =
o + td. In this equation, ’o’ represents the ray’s origin (the
position of the image’s pixel in the 3D world), and ’d’ signifies
the ray’s direction (a unit vector from the camera’s center to
the pixel on the image). We sample this ray in discrete points.

Once we have established the ray’s direction in relation to
the camera frame, we apply a rotation matrix to get the ray in
’world frame’. We then normalize to a unit vector for further
processing.

V. POSITION ENCODING

Directly inputting point coordinates into the network leads
to sub-optimal outcomes. This issue arises because the net-
work tends to focus on learning low-frequency features, often
overlooking higher frequencies. To counteract this, we employ
positional encoding - the sines and cosines of the point
coordinates at various frequencies - as inputs, rather than the
raw coordinates themselves.

VI. IMPLEMENTING THE NETWORK

The network architecture is provided in Fig. 3.
Dropout (p = 0.25) was later added. But it did not make a

big difference. The hyper-parameters that were found to work
well are given in TABLE I.

For any higher learning rate, the network was not generating
anything.

The network used to get stuck without learning anything.
Correcting the coordinate frames as used in the original
dataset/paper helped. Additionally, to avoid image pixels get-
ting stuck at 0 after relu, a small positive offset was added.
Noise was added to σ estimates as done in nerf-pl work.
We used Leaky-ReLU to allow for good gradient propagation
when the values are negative.

The training loss curve is given in fig. 4

VII. VOLUMETRIC RENDERING

The Neural Radiance Fields (NeRF) network produces
outputs that include RGB values and the volume density
based on the given input location and camera direction. These
outputs are then integrated into the volume rendering formula
to determine the color values at specific world coordinates.
The standard formula for volume rendering is presented as
follows:

Fig. 3: NeRF Network Architecture

C ≈
N∑
i=1

Tiαici (1)

where Ti represent the weights and ci the colors at each
point. The weights are computed using the equation:

Ti =

i−1∏
j=1

(1− αj) (2)



Fig. 4: NeRF training loss per epoch. X axis is approximately
12 x epoch count.

The opacity for each point is determined by:

αi = 1− exp(−σiδti) (3)

In this process, we calculate the transmittance of specific
sample point using the density values. This is then used to
modify the RGB colors at that location, resulting in the final
RGB values for the image.

VIII. CUSTOM DATASET

For the purpose of evaluating our network, we assembled
a custom dataset taking hints from the guidelines, which
emphasized the importance of uniform soft lighting for optimal
scene capture. After we collected 176 images (as shown in 5)
from all around the object, we required accurate camera pose
estimates, a critical input for our network. To achieve this,
we explored different software solutions. Initially, we utilized
COLMAP , which employs traditional Structure from Motion
(SfM) techniques. This approach proved effective in providing
precise camera pose estimates, which can be seen in figure
6. Subsequently, we experimented with Polycam, a tool that
not only facilitated the capture of pose data but also allowed
us to run the entire NeRF sequence, which was helpful to
compare the output with our network. A sample output can
be seen in figure 7 Polycam provided us with the raw data
(such as camera poses) directly from the process, which was
very similar to the output given by COLMAP. We then wrote
a simple script to convert the output of these software into a a
JSON structure similar to the dataset we were already using.

IX. NERF OUTPUT AND OBSERVATIONS

A. MSE, PSNR and Avg. SSIM Metrics

The Mean Square Error, Signal to Noise Ratio and the
Structural similarity index are presented for 3 scenarios for
the lego dataset in TABLE II.
As shown by the last row of TABLE II, when positional
embedding is absent, MSE and PSNR goes bad. But you may
wonder why the SSIM improves. That’s because, training actu-
ally breaks without positional encoding and a white image was
obtained; For white images, since our ground truth contains
mostly white pixels, it gives a better match via SSIM.

Fig. 5: Example of our custom dataset

Fig. 6: COLMAP SFM output

SSIM is a tricky metric to use for multiple images, because
its values can be negative. Still, in this work, we simply did
an average SSIM for 50 images in test dataset for lego.

B. Novel Views

Novel views (transform matrices were taken from test set)
were obtained for ship and lego dataset for this step [fig. 9,
fig. 8].

C. Failure Cases

For certain views, the network did not generalise well as
seen in this fig. 10. Increasing the resolution or different
sampling techniques can help.

D. Custom Dataset Views

A custom dataset was prepared as mentioned in the sum-
mary section. This dataset trained faster than the other dataset

Scenario MSE PNR Avg. SSIM
Pos. Encoding + Ray dist. perturb. 0.6696 1.7438 0.0086

Only Pos. Encoding 0.6612 1.7995 0.0073
Only Ray dist. perturb. 0.798 0.9803 0.0126

TABLE II: NeRF metrics on the test dataset for the Lego
model



Fig. 7: Polycam NERF output

Fig. 8: Ship - Novel NeRF Views (left), Ground Truth (right)

likely owing to the lack of textures. The generated images are
given in fig. 11.

X. CONCLUSION

In conclusion, we successfully integrated the sophisticated
technique of NeRF, utilizing synthetic datasets such as the

Fig. 9: Lego - Novel NeRF Views (left), Ground Truth (right)

Fig. 10: Failed Views

LEGO and Ship models to evaluate our model’s effectiveness.
Our experiments demonstrated the network’s proficiency in
rendering complex 3D scenes from 2D images, showcasing
detail and realism. We then collected a custom dataset to
further test our network in real world data. Through our
work, we’ve gained valuable insights into the capabilities and
limitations of NeRF, laying a foundation for future exploration
and improvement in the field of 3D scene reconstruction.



Fig. 11: Crocs dataset generated from colmap


