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Abstract—In this project, we aim to recreate the Structure
from Motion (SfM) procedure where we reconstruct a 3D scene
and simultaneously obtain the camera poses of a monocular
camera w.r.t. the given scene. In SfM, we create the entire rigid
structure from a set of images with different viewpoints, or
equivalently, a camera in motion. The output of the steps are
shown and discussed below.

I. DATASET FOR CLASSICAL SFM

We use 5 images of Unity Hall at WPI taken using a
Samsung S22 Ultra’s primary camera at f/1.8 aperture, ISO
50, and 1/500 sec shutter speed. The camera is calibrated, and
the images are distortion-corrected and resized to 800*600px.
SIFT keypoints and descriptors are provided and keypoint
matching between each image and its successive images is
also provided.

Fig. 1: Feature Descriptors of the sample image

A. Estimating Fundamental Matrix

The Fundamental Matrix is a matrix that describes the
relationship between corresponding points in two images of
a scene taken from different viewpoints. The matrix satisfies
the equation x′TFx = 0. The F matrix is a 3x3 matrix that
is obtained by solving the homogeneous linear system with 9
unknowns:
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We need 8 points to solve this system of equations. Due to
noise in the correspondences, the estimated F matrix can be
of rank 3. Since the rank needs to be 2, the issue is corrected
by setting the last(smallest) singular value of the estimated F
matrix to zero.

B. Match Outlier Rejection via RANSAC

As the point correspondences of SIFT could contain noise,
it may have several outliers. We use RANSAC algorithm to

remove these outliers to obtain a better estimate of the F
matrix. RANSAC results in that F matrix with the highest
number of inliers.

Fig. 2: Feature Matching Before RANSAC

Fig. 3: Feature Matching After RANSAC

C. Estimate Essential Matrix from Fundamental Matrix

Since the F matrix was calculated using epipolar constrains,
the relative camera poses between the two images can also be
calculated using the F matrix. Relative camera poses can be
computed using the Essential Matrix, E which is 3×3 matrix,
that satisfies the equation E = KTFK, where K is the camera
calibration/intrinsic matrix.

Similar to F matrix, the noise in K matrix might result in the
singular values of E not being (1, 1, 0). This can be corrected

by svd of E and reconstructing it as E = U
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D. Estimate Camera Pose from Essential Matrix

The pose of a camera is the rotation (Roll, Pitch, Yaw)
and translation (X, Y, Z) of the camera with respect to the
world. We can obtain the four camera pose configurations



(C1, R1), (C2, R2), (C3, R3) and (C4, R4) using E where C
is the camera center and R is the rotation matrix.

For E = UDV T and
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the 4 configurations are written by:

C1 = U(:, 3)

R1 = UWV T

C2 = −U(:, 3)

R2 = UWV T

C3 = U(:, 3)

R3 = UWV TV T

C4 = −U(:, 3)

R4 = UWV TV T

E. Triangulation Check for Cheirality Condition

The Cheirality condition states that the reconstructed points
must be in front of the cameras. To check for this condition,
we triangulate the 3D points of two camera poses using linear
least squares to check the sign of the depth Z in the camera
coordinate system with respect to camera center. A 3D point
X is in front of the camera iff:

r3(X−C) > 0

The best camera configuration, (C,R,X) is the one
that produces the maximum number of points satisfying the
cheirality condition. Using te 4 camera pose and the linearly
triangulated points from above, we can disambiguate the
camera pose.

1) Non-Linear Triangulation: Given the camera poses and
the linearly triangulated points, the locations of the 3D points
that minimizes the reprojection error can be further refined.
The minimization formula is of the form:
minx
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F. Perspective-n-Points, Linear Camera Pose Estimation

We have 3D points in the world, their 2D projections in the
image and the intrinsic parameter K. Now, the 6 DOF camera
pose can be estimated using linear least squares. Given 2D-3D
correspondences, X ↔ x, and the intrinsic parameter K, we
estimate the camera pose using linear least squares.

Fig. 4: Reprojected Points after Linear Triangulation - 1

Fig. 5: Reprojected Points after Linear Triangulation - 2

Fig. 6: Points Plot of Non Linear



G. PnP RANSAC

The PnP method above could have errors as as there could
be outliers in the given set of point correspondences. To
overcome this, we use RANSAC to help eliminate outliers.

H. Nonlinear PnP

We can refine the camera pose that minimizes reprojection
error. In this optimization step, we convert the rotation matrix
into quarternion form as it is a better choice to enforce
orthogonality of the rotation matrix.

I. Bundle Adjustment

Using our initialized camera poses and 3D points, we refine
them further by minimizing reprojection error using bundle
adjustment. Bundle adjustment refines camera poses and 3D
points simultaneously by minimizing the reprojection error
over CI

ii=1, qIii=1, and XI
ii=1.

Fig. 7: Plot Points with Camera Poses

Method Img2 Img3 Img4 Img5
Linear Triangulation 4.01 20.49 53.3 89.88

Non Linear Triangulation 3.87 20.7 52.01 56.02
Linear PnP (RANSAC) - 69.28 90.8 137.3

Non Linear PnP - 84.5 134.2 135.3

TABLE I: Re-projection error

II. CONCLUSION

We therefore implemented the components of Structure
from Motion following the classical approach to this problem
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